⚙️ Session 6 Advanced: Hybrid Graph-Vector Search¶
⚙️ IMPLEMENTER PATH CONTENT Prerequisites: Complete 🎯 Observer and 📝 Participant paths Time Investment: 3-4 hours Outcome: Master hybrid search combining graph reasoning with vector similarity
Advanced Learning Outcomes¶
After completing this module, you will master:
- Hybrid search architecture design and implementation
- Fusion algorithms for combining graph and vector results
- Adaptive scoring and context processing
- Performance optimization for hybrid systems
Understanding Hybrid Graph-Vector Architecture¶
Traditional approaches force a choice between graph reasoning and vector similarity search. Hybrid GraphRAG eliminates this limitation by intelligently combining both approaches, using graph traversal for relationship-based reasoning and vector similarity for semantic matching.
The key insight is that different query types benefit from different retrieval approaches:
- Factual queries benefit from precise graph traversal
- Semantic queries benefit from vector similarity
- Complex queries require both approaches working together
Advanced Hybrid Search System¶
System Architecture Overview¶
class HybridGraphVectorRAG:
"""Advanced hybrid system combining graph reasoning with vector similarity"""
def __init__(self, graph_store, vector_store, fusion_algorithm='adaptive'):
self.graph_rag = GraphRAGSystem(graph_store)
self.vector_rag = VectorRAGSystem(vector_store)
self.fusion_algorithm = fusion_algorithm
self.query_analyzer = QueryTypeAnalyzer()
The hybrid architecture maintains both graph and vector systems while adding intelligent fusion capabilities.
# Advanced fusion components
self.result_fusion = ResultFusionEngine()
self.adaptive_router = AdaptiveQueryRouter()
self.context_synthesizer = ContextSynthesizer()
# Performance optimization
self.cache_manager = HybridCacheManager()
self.query_optimizer = QueryOptimizer()
Intelligent Query Analysis and Routing¶
The hybrid system begins with sophisticated query analysis to determine optimal search strategies:
def analyze_query_requirements(self, query):
"""Analyze query to determine optimal search strategy"""
analysis = {
'query_type': self.classify_query_type(query),
'complexity': self.assess_query_complexity(query),
'entity_focus': self.identify_entity_requirements(query),
'relationship_requirements': self.assess_relationship_needs(query)
}
Query analysis examines multiple dimensions to understand what type of knowledge retrieval will be most effective.
# Determine search strategy weights
strategy_weights = {
'graph_weight': 0.5, # Default balanced approach
'vector_weight': 0.5,
'hybrid_confidence': 0.8
}
# Adjust weights based on query characteristics
if analysis['query_type'] == 'factual':
strategy_weights['graph_weight'] = 0.7
strategy_weights['vector_weight'] = 0.3
elif analysis['query_type'] == 'semantic':
strategy_weights['graph_weight'] = 0.3
strategy_weights['vector_weight'] = 0.7
elif analysis['query_type'] == 'multi_hop':
strategy_weights['graph_weight'] = 0.8
strategy_weights['vector_weight'] = 0.2
Dynamic weight adjustment ensures each query uses the most appropriate combination of search approaches.
Parallel Search Execution¶
Hybrid search executes both graph and vector searches in parallel for optimal performance:
def execute_hybrid_search(self, query, strategy_weights):
"""Execute parallel graph and vector searches"""
import asyncio
from concurrent.futures import ThreadPoolExecutor
async def parallel_search():
with ThreadPoolExecutor(max_workers=2) as executor:
# Execute searches in parallel
graph_future = executor.submit(
self.graph_rag.search,
query,
max_results=20
)
vector_future = executor.submit(
self.vector_rag.search,
query,
max_results=20
)
Parallel execution minimizes latency while gathering comprehensive results from both search approaches.
# Collect results
graph_results = graph_future.result()
vector_results = vector_future.result()
return {
'graph_results': graph_results,
'vector_results': vector_results,
'strategy_weights': strategy_weights
}
return asyncio.run(parallel_search())
Advanced Result Fusion Algorithms¶
Result fusion intelligently combines results from both search approaches:
class ResultFusionEngine:
"""Advanced fusion algorithms for hybrid search results"""
def __init__(self):
self.fusion_strategies = {
'weighted_combination': self.weighted_fusion,
'rank_fusion': self.rank_based_fusion,
'adaptive_fusion': self.adaptive_fusion
}
Multiple fusion strategies enable optimization for different query types and result characteristics.
def adaptive_fusion(self, graph_results, vector_results,
strategy_weights, query_context):
"""Adaptive fusion based on result quality and query context"""
# Analyze result quality
graph_quality = self.assess_result_quality(graph_results, 'graph')
vector_quality = self.assess_result_quality(vector_results, 'vector')
# Adjust fusion weights based on quality
quality_adjusted_weights = self.adjust_weights_for_quality(
strategy_weights, graph_quality, vector_quality
)
Quality-based adjustment ensures poor results from one approach don't negatively impact the final output.
# Apply sophisticated fusion algorithm
fused_results = []
# Phase 1: Direct high-confidence matches
for result in graph_results:
if result.confidence > 0.9:
fused_results.append({
'content': result.content,
'score': result.confidence * quality_adjusted_weights['graph_weight'],
'source': 'graph_high_confidence',
'reasoning_path': result.path
})
High-confidence results from graph traversal receive priority due to their logical reasoning foundation.
# Phase 2: Semantic similarity matches
for result in vector_results:
if result.similarity > 0.85:
fused_results.append({
'content': result.content,
'score': result.similarity * quality_adjusted_weights['vector_weight'],
'source': 'vector_high_similarity',
'metadata': result.metadata
})
return self.deduplicate_and_rank(fused_results)
Context Synthesis and Response Generation¶
Context synthesis creates coherent responses from diverse hybrid search results:
class ContextSynthesizer:
"""Synthesize contexts from hybrid search results"""
def synthesize_hybrid_context(self, fused_results, query):
"""Create coherent context from hybrid results"""
# Separate results by source type
graph_contexts = [r for r in fused_results if 'graph' in r['source']]
vector_contexts = [r for r in fused_results if 'vector' in r['source']]
synthesis = {
'primary_context': self.select_primary_context(fused_results),
'supporting_contexts': self.organize_supporting_contexts(fused_results),
'reasoning_chains': self.extract_reasoning_chains(graph_contexts),
'semantic_matches': self.organize_semantic_matches(vector_contexts)
}
Context organization enables the LLM to understand both the factual information and the reasoning pathways.
# Generate synthesis prompt
synthesis_prompt = f"""
Based on hybrid search combining graph reasoning and vector similarity:
Question: {query}
REASONING-BASED INFORMATION:
{self._format_reasoning_contexts(graph_contexts)}
SIMILARITY-BASED INFORMATION:
{self._format_similarity_contexts(vector_contexts)}
Provide a comprehensive answer that leverages both logical reasoning
and semantic similarity, clearly distinguishing between facts derived
from explicit relationships versus semantic associations.
"""
return synthesis_prompt
Performance Optimization for Hybrid Systems¶
Intelligent Caching Strategies¶
Hybrid systems require sophisticated caching due to the complexity of fusion operations:
class HybridCacheManager:
"""Advanced caching for hybrid graph-vector systems"""
def __init__(self, max_cache_size=50000):
# Multi-level cache architecture
self.query_analysis_cache = LRUCache(max_cache_size // 10)
self.graph_results_cache = LRUCache(max_cache_size // 3)
self.vector_results_cache = LRUCache(max_cache_size // 3)
self.fusion_results_cache = LRUCache(max_cache_size // 3)
Multi-level caching optimizes different stages of the hybrid search pipeline.
def get_cached_hybrid_results(self, query, strategy_weights):
"""Retrieve cached results with fallback strategy"""
cache_key = self.generate_cache_key(query, strategy_weights)
# Try full fusion cache first
if cache_key in self.fusion_results_cache:
return self.fusion_results_cache[cache_key]
# Try component caches with partial fusion
graph_key = self.generate_graph_cache_key(query)
vector_key = self.generate_vector_cache_key(query)
if graph_key in self.graph_results_cache and vector_key in self.vector_results_cache:
# Perform fusion on cached component results
graph_results = self.graph_results_cache[graph_key]
vector_results = self.vector_results_cache[vector_key]
fused_results = self.fusion_engine.adaptive_fusion(
graph_results, vector_results, strategy_weights, query
)
# Cache the fusion result
self.fusion_results_cache[cache_key] = fused_results
return fused_results
return None # No cached results available
Query Optimization Techniques¶
Query optimization improves performance by analyzing and transforming queries:
class QueryOptimizer:
"""Optimize queries for hybrid graph-vector search"""
def optimize_for_hybrid_search(self, original_query):
"""Optimize query for both graph and vector components"""
optimization = {
'graph_optimized_query': self.optimize_for_graph_search(original_query),
'vector_optimized_query': self.optimize_for_vector_search(original_query),
'entity_extraction': self.extract_key_entities(original_query),
'relationship_hints': self.identify_relationship_patterns(original_query)
}
Query optimization creates specialized versions for each search component while maintaining query intent.
# Apply query expansion strategies
if self.should_expand_query(original_query):
optimization['expanded_queries'] = {
'graph_expanded': self.expand_for_graph_reasoning(original_query),
'vector_expanded': self.expand_for_semantic_search(original_query)
}
return optimization
Advanced Evaluation and Monitoring¶
Hybrid System Metrics¶
Evaluating hybrid systems requires metrics that capture both individual component performance and fusion effectiveness:
class HybridSystemEvaluator:
"""Comprehensive evaluation for hybrid GraphRAG systems"""
def evaluate_hybrid_performance(self, test_queries, ground_truth):
"""Evaluate hybrid system across multiple dimensions"""
evaluation_results = {
'component_performance': {
'graph_only': self.evaluate_graph_component(test_queries, ground_truth),
'vector_only': self.evaluate_vector_component(test_queries, ground_truth),
},
'fusion_effectiveness': self.evaluate_fusion_quality(test_queries, ground_truth),
'hybrid_performance': self.evaluate_hybrid_system(test_queries, ground_truth)
}
Component-level evaluation helps identify which parts of the hybrid system are working well and which need improvement.
# Calculate hybrid-specific metrics
evaluation_results['hybrid_metrics'] = {
'fusion_improvement': self.calculate_fusion_improvement(evaluation_results),
'query_type_performance': self.analyze_performance_by_query_type(
test_queries, ground_truth
),
'latency_analysis': self.analyze_hybrid_latency(),
'cost_effectiveness': self.calculate_cost_per_query()
}
return evaluation_results
Real-time Performance Monitoring¶
Production hybrid systems require continuous monitoring:
class HybridSystemMonitor:
"""Real-time monitoring for hybrid GraphRAG systems"""
def __init__(self):
self.metrics_collector = MetricsCollector()
self.performance_tracker = PerformanceTracker()
self.quality_monitor = QualityMonitor()
Multi-faceted monitoring ensures the system maintains high performance and quality over time.
def monitor_hybrid_query(self, query, results, execution_time):
"""Monitor individual query execution"""
monitoring_data = {
'query_characteristics': self.analyze_query_characteristics(query),
'component_performance': {
'graph_latency': execution_time.get('graph_search_time', 0),
'vector_latency': execution_time.get('vector_search_time', 0),
'fusion_latency': execution_time.get('fusion_time', 0)
},
'result_quality': {
'graph_result_count': len(results.get('graph_results', [])),
'vector_result_count': len(results.get('vector_results', [])),
'fusion_score': results.get('fusion_confidence', 0)
}
}
# Store monitoring data for analysis
self.metrics_collector.record_query_execution(monitoring_data)
# Check for performance anomalies
self.performance_tracker.check_performance_thresholds(monitoring_data)
🧭 Navigation¶
Previous: Session 5 - Type-Safe Development →
Next: Session 7 - Agent Systems →