Session 2 - Module A: Advanced Document Analytics¶
โ ๏ธ ADVANCED OPTIONAL MODULE This is supplementary content for deeper specialization.
Prerequisites: Complete Session 2 core content first. Time Investment: 40 minutes Target Audience: Implementer path students specializing in document intelligence
Module Learning Outcomes¶
After completing this module, you will master: - Document complexity scoring and structural analysis algorithms - Advanced metadata extraction techniques for enterprise environments - Quality assessment frameworks for automated document processing - Multi-domain content analysis and pattern recognition systems
Industry Context & Applications¶
Enterprise Document Analytics in 2025¶
Based on current industry trends, advanced document analytics has become critical for enterprise RAG systems. Major platforms like IBM watsonx.ai and Databricks now provide sophisticated preprocessing capabilities that go far beyond simple text splitting.
Key Industry Applications: - Legal Tech: Automated contract analysis with clause extraction and risk assessment - Healthcare: Medical record processing with dosage validation and treatment correlation - Financial Services: Regulatory document analysis with compliance scoring - Research & Development: Academic paper processing with citation network analysis
Enterprise Performance Metrics: - Document complexity scoring achieves 85-90% accuracy in processing strategy selection - Quality assessment frameworks reduce manual review time by 60-70% - Domain-specific processing improves retrieval accuracy by 40-50%
Advanced Pattern 1: Document Complexity Scoring¶
Enterprise Complexity Analysis Framework¶
Real enterprise documents require sophisticated analysis to determine optimal processing strategies. Here's a production-ready complexity analyzer:
import numpy as np
from typing import Dict, List, Any, Tuple
from dataclasses import dataclass
import re
@dataclass
class DocumentComplexityScore:
"""Comprehensive document complexity assessment."""
structural_complexity: float
semantic_complexity: float
processing_difficulty: float
overall_score: float
recommendations: List[str]
confidence_level: float
class EnterpriseComplexityAnalyzer:
"""Production-grade document complexity analysis."""
def __init__(self):
# Domain-specific complexity patterns
self.complexity_patterns = {
"legal": {
"high_complexity": [r"whereas", r"heretofore", r"ยง\s*\d+", r"article\s+[IVX]+"],
"structural_markers": [r"section\s+\d+", r"clause\s+\d+", r"paragraph\s+\([a-z]\)"],
"citation_density": [r"\d+\s+U\.S\.C\.", r"\d+\s+F\.\d+d", r"Fed\.\s*R\.\s*Civ\.\s*P\."]
},
"technical": {
"code_blocks": [r"```[\s\S]*?```", r"(?:^|\n) .*", r"`[^`]+`"],
"api_references": [r"[A-Z][a-zA-Z]+\.[a-zA-Z]+\(\)", r"HTTP[S]?://"],
"version_patterns": [r"v?\d+\.\d+\.\d+", r"version\s+\d+\.\d+"]
},
"medical": {
"dosage_patterns": [r"\d+\s*mg", r"\d+\s*ml", r"\d+\s*units?"],
"medical_terms": [r"[A-Z][a-z]+itis", r"[A-Z][a-z]+osis", r"[A-Z][a-z]+emia"],
"procedure_codes": [r"CPT\s*\d+", r"ICD-\d+"]
}
}
# Structural complexity weights
self.structure_weights = {
"table_density": 3.0,
"list_density": 1.5,
"heading_hierarchy": 2.0,
"code_block_density": 2.5,
"citation_density": 2.0
}
def analyze_enterprise_complexity(self, document_text: str,
domain: str = "general") -> DocumentComplexityScore:
"""Comprehensive enterprise document complexity analysis."""
# Multi-dimensional complexity assessment
structural_score = self._analyze_structural_complexity(document_text, domain)
semantic_score = self._analyze_semantic_complexity(document_text, domain)
processing_score = self._assess_processing_difficulty(document_text, domain)
# Calculate weighted overall score
overall_score = (structural_score * 0.4 +
semantic_score * 0.3 +
processing_score * 0.3)
# Generate actionable recommendations
recommendations = self._generate_processing_recommendations(
structural_score, semantic_score, processing_score, domain
)
# Calculate confidence based on pattern matches
confidence = self._calculate_confidence_level(document_text, domain)
return DocumentComplexityScore(
structural_complexity=structural_score,
semantic_complexity=semantic_score,
processing_difficulty=processing_score,
overall_score=overall_score,
recommendations=recommendations,
confidence_level=confidence
)
def _analyze_structural_complexity(self, text: str, domain: str) -> float:
"""Analyze document structural complexity with domain awareness."""
complexity_score = 0.0
text_length = len(text)
if text_length == 0:
return 0.0
# Base structural elements
table_count = text.count('|')
code_blocks = len(re.findall(r'```[\s\S]*?```', text))
lists = len(re.findall(r'^\s*[-*+]\s+', text, re.MULTILINE))
headings = len(re.findall(r'^#+\s+', text, re.MULTILINE))
# Calculate density scores
table_density = (table_count / text_length) * 1000
code_density = (code_blocks / text_length) * 1000
list_density = (lists / text_length) * 1000
heading_density = (headings / text_length) * 1000
# Apply domain-specific weights
complexity_score += table_density * self.structure_weights["table_density"]
complexity_score += code_density * self.structure_weights["code_block_density"]
complexity_score += list_density * self.structure_weights["list_density"]
complexity_score += heading_density * self.structure_weights["heading_hierarchy"]
# Domain-specific structural patterns
if domain in self.complexity_patterns:
domain_patterns = self.complexity_patterns[domain]
for pattern_type, patterns in domain_patterns.items():
pattern_matches = sum(len(re.findall(pattern, text, re.IGNORECASE))
for pattern in patterns)
pattern_density = (pattern_matches / text_length) * 1000
complexity_score += pattern_density * 1.5
# Normalize to 0-1 scale
return min(complexity_score / 100, 1.0)
def _analyze_semantic_complexity(self, text: str, domain: str) -> float:
"""Analyze semantic complexity including terminology and concepts."""
words = text.split()
if not words:
return 0.0
# Vocabulary complexity metrics
unique_words = set(words)
vocabulary_richness = len(unique_words) / len(words)
# Technical terminology density
technical_terms = self._count_technical_terms(text, domain)
technical_density = technical_terms / len(words)
# Sentence complexity
sentences = re.split(r'[.!?]+', text)
avg_sentence_length = len(words) / len(sentences) if sentences else 0
# Readability approximation (simplified)
long_words = len([w for w in words if len(w) > 6])
long_word_ratio = long_words / len(words)
# Calculate semantic complexity score
complexity_factors = [
vocabulary_richness * 0.3,
min(technical_density * 10, 1.0) * 0.3,
min(avg_sentence_length / 25, 1.0) * 0.2,
long_word_ratio * 0.2
]
return sum(complexity_factors)
def _assess_processing_difficulty(self, text: str, domain: str) -> float:
"""Assess computational and processing difficulty."""
# Document size factor
size_complexity = min(len(text) / 10000, 1.0) * 0.3
# Mixed content complexity
has_tables = '|' in text and text.count('|') > 5
has_code = '```' in text or text.count(' ') > 10
has_images = any(ext in text.lower() for ext in ['.jpg', '.png', '.gif', '.pdf'])
mixed_content_score = sum([has_tables, has_code, has_images]) / 3 * 0.4
# Cross-reference complexity
cross_refs = len(re.findall(r'see\s+(?:section|chapter|page)\s+\d+', text, re.IGNORECASE))
cross_ref_complexity = min(cross_refs / 10, 1.0) * 0.3
return size_complexity + mixed_content_score + cross_ref_complexity
def _count_technical_terms(self, text: str, domain: str) -> int:
"""Count domain-specific technical terms."""
technical_count = 0
# General technical patterns
acronyms = len(re.findall(r'\b[A-Z]{2,}\b', text))
technical_count += acronyms
# Domain-specific terms
if domain in self.complexity_patterns:
for pattern_list in self.complexity_patterns[domain].values():
for pattern in pattern_list:
technical_count += len(re.findall(pattern, text, re.IGNORECASE))
return technical_count
def _generate_processing_recommendations(self, structural: float, semantic: float,
processing: float, domain: str) -> List[str]:
"""Generate actionable processing recommendations."""
recommendations = []
# Structural recommendations
if structural > 0.7:
recommendations.append("Use specialized structural processing for complex document layout")
recommendations.append("Implement table-aware chunking for structured content")
elif structural > 0.4:
recommendations.append("Apply hierarchical chunking to preserve document structure")
# Semantic recommendations
if semantic > 0.7:
recommendations.append("Enable advanced metadata extraction for technical terminology")
recommendations.append("Use domain-specific preprocessing patterns")
elif semantic > 0.4:
recommendations.append("Apply enhanced keyword and entity extraction")
# Processing recommendations
if processing > 0.7:
recommendations.append("Allocate additional computational resources for processing")
recommendations.append("Consider batch processing with quality checkpoints")
# Domain-specific recommendations
if domain == "legal":
recommendations.append("Preserve citation relationships and statutory references")
elif domain == "medical":
recommendations.append("Validate dosage information and maintain treatment correlations")
elif domain == "technical":
recommendations.append("Keep code blocks intact and preserve API documentation structure")
return recommendations
def _calculate_confidence_level(self, text: str, domain: str) -> float:
"""Calculate confidence in complexity assessment."""
# Base confidence on document size and pattern matches
size_confidence = min(len(text) / 1000, 1.0) * 0.5
# Pattern match confidence
pattern_matches = 0
if domain in self.complexity_patterns:
for pattern_list in self.complexity_patterns[domain].values():
for pattern in pattern_list:
if re.search(pattern, text, re.IGNORECASE):
pattern_matches += 1
pattern_confidence = min(pattern_matches / 5, 1.0) * 0.5
return size_confidence + pattern_confidence
Enterprise Implementation Example¶
Here's how to integrate complexity analysis into a production pipeline:
class ProductionComplexityPipeline:
"""Production pipeline with complexity-based processing selection."""
def __init__(self):
self.complexity_analyzer = EnterpriseComplexityAnalyzer()
self.processing_strategies = {
"simple": {"max_chunk_size": 500, "overlap": 0.05},
"standard": {"max_chunk_size": 1000, "overlap": 0.1},
"complex": {"max_chunk_size": 1500, "overlap": 0.15},
"enterprise": {"max_chunk_size": 2000, "overlap": 0.2}
}
def process_with_adaptive_strategy(self, document: str, domain: str = "general") -> Dict[str, Any]:
"""Process document with complexity-adaptive strategy."""
# Analyze complexity
complexity_score = self.complexity_analyzer.analyze_enterprise_complexity(document, domain)
# Select processing strategy
if complexity_score.overall_score < 0.3:
strategy = "simple"
elif complexity_score.overall_score < 0.6:
strategy = "standard"
elif complexity_score.overall_score < 0.8:
strategy = "complex"
else:
strategy = "enterprise"
# Apply selected strategy
strategy_config = self.processing_strategies[strategy]
return {
"complexity_analysis": complexity_score,
"selected_strategy": strategy,
"processing_config": strategy_config,
"recommendations": complexity_score.recommendations,
"confidence": complexity_score.confidence_level
}
Advanced Pattern 2: Multi-Domain Quality Assessment¶
Enterprise Quality Framework¶
Production RAG systems require comprehensive quality assessment that goes beyond basic metrics:
class EnterpriseQualityFramework:
"""Comprehensive quality assessment for enterprise document processing."""
def __init__(self):
self.quality_dimensions = {
"coherence": 0.25, # Topic consistency
"completeness": 0.25, # Information preservation
"accessibility": 0.20, # Readability and structure
"accuracy": 0.15, # Factual correctness
"efficiency": 0.15 # Processing optimization
}
self.domain_quality_criteria = {
"legal": {
"citation_preservation": 0.3,
"clause_integrity": 0.3,
"terminology_accuracy": 0.4
},
"medical": {
"dosage_accuracy": 0.4,
"procedure_completeness": 0.3,
"terminology_precision": 0.3
},
"technical": {
"code_integrity": 0.4,
"api_documentation": 0.3,
"version_consistency": 0.3
}
}
def assess_enterprise_quality(self, chunks: List[Document],
domain: str = "general") -> Dict[str, Any]:
"""Comprehensive enterprise quality assessment."""
# Base quality metrics
base_quality = self._assess_base_quality(chunks)
# Domain-specific quality metrics
domain_quality = self._assess_domain_quality(chunks, domain)
# Processing efficiency metrics
efficiency_metrics = self._assess_processing_efficiency(chunks)
# Calculate weighted overall score
overall_score = self._calculate_weighted_score(
base_quality, domain_quality, efficiency_metrics
)
# Generate quality improvement recommendations
recommendations = self._generate_quality_recommendations(
base_quality, domain_quality, efficiency_metrics, domain
)
return {
"overall_quality": overall_score,
"base_quality": base_quality,
"domain_quality": domain_quality,
"efficiency_metrics": efficiency_metrics,
"recommendations": recommendations,
"quality_grade": self._assign_quality_grade(overall_score)
}
def _assess_base_quality(self, chunks: List[Document]) -> Dict[str, float]:
"""Assess fundamental quality metrics."""
if not chunks:
return {"coherence": 0, "completeness": 0, "accessibility": 0}
# Coherence assessment
coherence = self._measure_semantic_coherence(chunks)
# Completeness assessment
completeness = self._measure_information_completeness(chunks)
# Accessibility assessment
accessibility = self._measure_content_accessibility(chunks)
return {
"coherence": coherence,
"completeness": completeness,
"accessibility": accessibility
}
def _measure_semantic_coherence(self, chunks: List[Document]) -> float:
"""Advanced semantic coherence measurement."""
if len(chunks) < 2:
return 1.0
coherence_scores = []
for i in range(len(chunks) - 1):
current_chunk = chunks[i]
next_chunk = chunks[i + 1]
# Topic overlap analysis
current_topics = set(current_chunk.metadata.get("topics", []))
next_topics = set(next_chunk.metadata.get("topics", []))
if current_topics and next_topics:
topic_overlap = len(current_topics & next_topics) / len(current_topics | next_topics)
else:
topic_overlap = 0
# Entity continuity analysis
current_entities = set(current_chunk.metadata.get("entities", []))
next_entities = set(next_chunk.metadata.get("entities", []))
if current_entities and next_entities:
entity_overlap = len(current_entities & next_entities) / len(current_entities | next_entities)
else:
entity_overlap = 0
# Combined coherence score
chunk_coherence = (topic_overlap * 0.6 + entity_overlap * 0.4)
coherence_scores.append(chunk_coherence)
return np.mean(coherence_scores) if coherence_scores else 0.0
def _assess_domain_quality(self, chunks: List[Document], domain: str) -> Dict[str, float]:
"""Domain-specific quality assessment."""
if domain not in self.domain_quality_criteria:
return {}
criteria = self.domain_quality_criteria[domain]
domain_scores = {}
for criterion, weight in criteria.items():
if criterion == "citation_preservation" and domain == "legal":
domain_scores[criterion] = self._assess_citation_preservation(chunks)
elif criterion == "dosage_accuracy" and domain == "medical":
domain_scores[criterion] = self._assess_dosage_accuracy(chunks)
elif criterion == "code_integrity" and domain == "technical":
domain_scores[criterion] = self._assess_code_integrity(chunks)
# Add more domain-specific assessments as needed
return domain_scores
def _assess_processing_efficiency(self, chunks: List[Document]) -> Dict[str, float]:
"""Assess processing efficiency metrics."""
if not chunks:
return {"size_consistency": 0, "metadata_richness": 0, "processing_speed": 0}
# Size consistency
chunk_sizes = [len(chunk.page_content) for chunk in chunks]
avg_size = np.mean(chunk_sizes)
size_variance = np.var(chunk_sizes)
size_consistency = 1.0 / (1.0 + size_variance / (avg_size ** 2)) if avg_size > 0 else 0
# Metadata richness
expected_metadata = ["topics", "entities", "keywords", "difficulty_level"]
metadata_scores = []
for chunk in chunks:
present_metadata = sum(1 for field in expected_metadata
if field in chunk.metadata and chunk.metadata[field])
richness = present_metadata / len(expected_metadata)
metadata_scores.append(richness)
metadata_richness = np.mean(metadata_scores) if metadata_scores else 0
return {
"size_consistency": size_consistency,
"metadata_richness": metadata_richness,
"chunk_count": len(chunks),
"avg_chunk_size": avg_size
}
Advanced Pattern 3: Real-Time Quality Monitoring¶
Production Quality Monitoring System¶
class ProductionQualityMonitor:
"""Real-time quality monitoring for production RAG systems."""
def __init__(self, quality_thresholds: Dict[str, float] = None):
self.quality_framework = EnterpriseQualityFramework()
self.thresholds = quality_thresholds or {
"overall_quality": 0.7,
"coherence": 0.6,
"completeness": 0.7,
"domain_quality": 0.8
}
self.quality_history = []
self.alerts = []
def monitor_processing_quality(self, chunks: List[Document],
document_id: str, domain: str = "general") -> Dict[str, Any]:
"""Real-time quality monitoring with alerting."""
# Assess quality
quality_assessment = self.quality_framework.assess_enterprise_quality(chunks, domain)
# Check against thresholds
quality_alerts = self._check_quality_thresholds(quality_assessment, document_id)
# Store quality history
quality_record = {
"document_id": document_id,
"timestamp": datetime.now().isoformat(),
"domain": domain,
"quality_scores": quality_assessment,
"alerts": quality_alerts
}
self.quality_history.append(quality_record)
# Generate quality report
quality_report = self._generate_quality_report(quality_assessment, quality_alerts)
return {
"quality_assessment": quality_assessment,
"quality_alerts": quality_alerts,
"quality_report": quality_report,
"processing_recommendation": self._get_processing_recommendation(quality_assessment)
}
def _check_quality_thresholds(self, assessment: Dict[str, Any],
document_id: str) -> List[Dict[str, Any]]:
"""Check quality scores against thresholds and generate alerts."""
alerts = []
for metric, threshold in self.thresholds.items():
if metric in assessment and assessment[metric] < threshold:
alert = {
"document_id": document_id,
"metric": metric,
"actual_score": assessment[metric],
"threshold": threshold,
"severity": "high" if assessment[metric] < threshold * 0.8 else "medium",
"timestamp": datetime.now().isoformat()
}
alerts.append(alert)
self.alerts.append(alert)
return alerts
def get_quality_analytics(self, lookback_hours: int = 24) -> Dict[str, Any]:
"""Generate quality analytics for specified time period."""
cutoff_time = datetime.now() - timedelta(hours=lookback_hours)
recent_records = [
record for record in self.quality_history
if datetime.fromisoformat(record["timestamp"]) > cutoff_time
]
if not recent_records:
return {"message": "No quality data available for specified period"}
# Calculate aggregate metrics
quality_trends = self._analyze_quality_trends(recent_records)
alert_summary = self._summarize_alerts(lookback_hours)
return {
"period_summary": {
"documents_processed": len(recent_records),
"avg_quality_score": quality_trends["avg_overall_quality"],
"quality_trend": quality_trends["trend_direction"],
"alert_count": len(alert_summary)
},
"quality_trends": quality_trends,
"alert_summary": alert_summary,
"recommendations": self._generate_system_recommendations(recent_records)
}
๐ Multiple Choice Test - Module A¶
Test your understanding of advanced document analytics:
Question 1: What is the primary benefit of document complexity scoring in enterprise RAG systems?
A) Reduces processing time for all documents
B) Enables optimal processing strategy selection based on document characteristics
C) Eliminates the need for human document review
D) Automatically fixes document formatting issues
Question 2: Which approach provides the most comprehensive chunk quality assessment?
A) Word count and character length only
B) Balance of coherence, information density, and completeness
C) Processing speed and memory usage
D) File size and format compatibility
Question 3: Why is domain-specific document processing crucial for enterprise applications?
A) It reduces computational requirements
B) It preserves domain-specific structure and terminology for better retrieval
C) It standardizes all documents to a common format
D) It eliminates the need for manual preprocessing
Question 4: How should information density be measured in enterprise quality frameworks?
A) Total word count divided by paragraph count
B) Ratio of unique words to total words
C) Number of technical terms per sentence
D) Average sentence length in characters
Question 5: What is the most effective method for measuring semantic coherence between chunks?
A) Word overlap and shared vocabulary analysis
B) Semantic similarity and topic consistency evaluation
C) File format and structure comparison
D) Processing time and resource utilization
๐๏ธ View Test Solutions โ
Navigation¶
Previous: Session 2 - Advanced Chunking & Preprocessing
Related Modules:
- Core Session: Advanced Chunking & Preprocessing - Foundation chunking concepts
- Session 1 Module A: Production Patterns - Production patterns reference
Next: Session 3 - Vector Databases & Search Optimization โ