Session 9: Multi-Agent Patterns & Coordination¶
Learning Navigation Hub¶
Total Time Investment: 90 minutes (Core) + 45-140 minutes (Optional) Your Learning Path: Choose your engagement level
Quick Start Guide¶
- Observer (50 min): Read coordination concepts + examine multi-agent patterns
- Participant (90 min): Follow exercises + build coordination systems
- Implementer (150 min): Create advanced patterns + explore production systems
Session Overview Dashboard¶
Core Learning Track (90 minutes) - REQUIRED¶
Section | Concept Load | Time | Skills |
---|---|---|---|
ReAct Pattern Foundation | 3 concepts | 25 min | Understanding |
Multi-Agent Coordination | 4 concepts | 30 min | Implementation |
🧠 Planning & Reflection | 3 concepts | 25 min | Application |
✅ Basic Production Patterns | 2 concepts | 10 min | Deployment |
Optional Deep Dive Modules (Choose Your Adventure)¶
- 🔬 Module A: Advanced Consensus Algorithms → (70 min) - Byzantine fault tolerance & game theory
- 🏭 Module B: Production Multi-Agent Systems → (70 min) - Enterprise deployment & monitoring
Code Files: All examples use files in src/session9/
Quick Start: Run cd src/session9 && python react_agent.py
to see multi-agent coordination
Core Section (Required - 90 minutes)¶
Part 1: ReAct Pattern Foundation (25 minutes)¶
Cognitive Load: 3 new concepts Learning Mode: Conceptual Understanding
Understanding ReAct (8 minutes)¶
The ReAct pattern (Reasoning + Acting) makes agent thinking transparent and iterative:
This diagram illustrates the ReAct (Reasoning + Acting) pattern flow, showing the iterative cycle of thought, action, and observation that enables transparent reasoning. The pattern demonstrates how agents can break down complex problems into manageable steps with clear decision points.
File: src/session9/react_agent.py
- Core ReAct implementation
from typing import Dict, List, Any, Optional
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime
class ActionType(Enum):
SEARCH = "search"
CALCULATE = "calculate"
REASON = "reason"
FINAL_ANSWER = "final_answer"
@dataclass
class ReActStep:
"""Individual step in ReAct reasoning chain"""
step_number: int
thought: str
action: ActionType
action_input: str
observation: str
confidence: float
timestamp: datetime = field(default_factory=datetime.now)
class BasicReActAgent:
"""Foundation ReAct agent with transparent reasoning"""
def __init__(self, llm_client, tools: Dict[str, Any], max_steps: int = 6):
self.llm = llm_client
self.tools = tools
self.max_steps = max_steps
self.reasoning_history: List[ReActStep] = []
async def solve(self, problem: str) -> Dict[str, Any]:
"""Main problem-solving method using ReAct pattern"""
self.reasoning_history = []
current_step = 1
while current_step <= self.max_steps:
# Generate reasoning step
step = await self._execute_reasoning_step(problem, current_step)
self.reasoning_history.append(step)
# Check for completion
if step.action == ActionType.FINAL_ANSWER:
break
current_step += 1
return self._format_solution()
Key Concepts: 1. Transparent Reasoning: Every thought step is recorded and traceable 2. Iterative Problem Solving: Thoughts, actions, and observations cycle 3. Confidence Tracking: Each step includes confidence assessment
ReAct Execution Flow (10 minutes)¶
Implementing the reasoning-action loop:
File: src/session9/reasoning_engine.py
- Advanced reasoning patterns
async def _execute_reasoning_step(
self, context: str, step_num: int
) -> ReActStep:
"""Execute a single ReAct reasoning step"""
# Generate thought based on current context
thought = await self._generate_structured_thought(context)
# Determine action based on thought
action_decision = await self._decide_next_action(thought, context)
action_type = ActionType(action_decision['action'])
action_input = action_decision['input']
# Execute action and get observation
observation = await self._execute_action(action_type, action_input)
# Calculate confidence in this step
confidence = await self._calculate_step_confidence(
thought, action_type, observation
)
return ReActStep(
step_number=step_num,
thought=thought,
action=action_type,
action_input=action_input,
observation=observation,
confidence=confidence
)
def _generate_structured_thought(self, context: str) -> str:
"""Generate systematic thought with reasoning framework"""
prompt = f"""
Current context: {context}
Recent history: {self._get_recent_history_summary()}
Think systematically:
1. What do I understand so far?
2. What information gaps remain?
3. What's the most productive next action?
4. What risks should I consider?
Provide clear reasoning for the next step:
"""
return await self.llm.generate(prompt)
Meta-Reasoning Quality Assessment (7 minutes)¶
Evaluating reasoning quality:
class MetaReActAnalyzer:
"""Analyzes and improves ReAct reasoning quality"""
def __init__(self, llm_client):
self.llm = llm_client
async def analyze_reasoning_quality(
self, reasoning_history: List[ReActStep]
) -> Dict[str, Any]:
"""Analyze reasoning chain quality"""
if len(reasoning_history) < 2:
return {'quality_score': 0.5, 'issues': []}
# Detect circular reasoning
circular_analysis = await self._detect_circular_reasoning(reasoning_history)
# Assess progress quality
progress_analysis = await self._assess_progress_quality(reasoning_history)
# Evaluate confidence patterns
confidence_analysis = await self._analyze_confidence_patterns(reasoning_history)
return {
'quality_score': self._calculate_overall_quality(
circular_analysis, progress_analysis, confidence_analysis
),
'circular_reasoning': circular_analysis,
'progress_quality': progress_analysis,
'confidence_patterns': confidence_analysis,
'recommendations': await self._generate_improvement_recommendations(
reasoning_history
)
}
async def _detect_circular_reasoning(
self, history: List[ReActStep]
) -> Dict[str, Any]:
"""Detect if agent is stuck in reasoning loops"""
recent_steps = history[-4:] # Examine last 4 steps
action_sequence = [step.action for step in recent_steps]
# Check for repeated action patterns
if len(set(action_sequence)) <= 2 and len(action_sequence) >= 3:
return {
'has_circular_reasoning': True,
'pattern': action_sequence,
'severity': 'high'
}
return {'has_circular_reasoning': False}
Part 2: Multi-Agent Coordination (30 minutes)¶
Cognitive Load: 4 new concepts Learning Mode: Implementation & Practice
Agent Communication Patterns (10 minutes)¶
Structured communication for multi-agent systems:
This diagram depicts various multi-agent coordination patterns including hierarchical delegation, consensus voting, and peer-to-peer communication. The visualization shows how agents collaborate through structured message passing and coordination protocols.
File: src/session9/multi_agent_coordination.py
- Communication framework
from typing import Dict, List, Any, Optional, Set
from dataclasses import dataclass, field
from enum import Enum
import asyncio
import uuid
from datetime import datetime
class MessageType(Enum):
REQUEST = "request"
RESPONSE = "response"
PROPOSAL = "proposal"
VOTE = "vote"
CONSENSUS = "consensus"
STATUS_UPDATE = "status_update"
@dataclass
class AgentMessage:
"""Structured message for inter-agent communication"""
message_id: str = field(default_factory=lambda: str(uuid.uuid4()))
sender_id: str = ""
recipient_id: str = ""
message_type: MessageType = MessageType.REQUEST
content: Dict[str, Any] = field(default_factory=dict)
timestamp: datetime = field(default_factory=datetime.now)
requires_response: bool = True
conversation_id: Optional[str] = None
class CommunicationHub:
"""Central coordination hub for multi-agent communication"""
def __init__(self):
self.agents: Dict[str, 'BaseAgent'] = {}
self.message_queue: List[AgentMessage] = []
self.active_conversations: Dict[str, List[AgentMessage]] = {}
async def register_agent(self, agent: 'BaseAgent'):
"""Register agent with communication hub"""
self.agents[agent.agent_id] = agent
await agent.set_communication_hub(self)
async def send_message(self, message: AgentMessage) -> bool:
"""Send message with delivery confirmation"""
# Validate recipient exists
if message.recipient_id not in self.agents:
return False
# Add to conversation thread
if message.conversation_id:
if message.conversation_id not in self.active_conversations:
self.active_conversations[message.conversation_id] = []
self.active_conversations[message.conversation_id].append(message)
# Deliver message
recipient = self.agents[message.recipient_id]
success = await recipient.receive_message(message)
return success
Basic Consensus Mechanisms (8 minutes)¶
Simple voting and agreement patterns:
File: src/session9/consensus_algorithms.py
- Basic consensus implementation
class SimpleConsensusManager:
"""Basic consensus mechanisms for multi-agent decisions"""
def __init__(self, agents: List['BaseAgent'], threshold: float = 0.67):
self.agents = agents
self.consensus_threshold = threshold
self.voting_history: List[Dict[str, Any]] = []
async def simple_majority_consensus(
self, decision_point: str, context: Dict[str, Any]
) -> Dict[str, Any]:
"""Simple majority voting consensus"""
# Collect proposals from all agents
proposals = await self._collect_agent_proposals(decision_point, context)
# Conduct voting round
votes = await self._conduct_voting_round(proposals, context)
# Count votes and determine winner
vote_counts = self._count_votes(votes)
winner = max(vote_counts.items(), key=lambda x: x[1])
# Check if threshold met
total_votes = sum(vote_counts.values())
if winner[1] / total_votes >= self.consensus_threshold:
return {
'consensus_reached': True,
'decision': winner[0],
'vote_counts': vote_counts,
'confidence': winner[1] / total_votes
}
else:
return {
'consensus_reached': False,
'vote_counts': vote_counts,
'reason': 'Threshold not met'
}
async def _collect_agent_proposals(
self, decision_point: str, context: Dict[str, Any]
) -> List[Dict[str, Any]]:
"""Collect initial proposals from all agents"""
proposal_tasks = []
for agent in self.agents:
task = self._get_agent_proposal(agent, decision_point, context)
proposal_tasks.append(task)
proposals = await asyncio.gather(*proposal_tasks, return_exceptions=True)
# Filter out failed proposals
valid_proposals = []
for i, proposal in enumerate(proposals):
if not isinstance(proposal, Exception):
valid_proposals.append({
'agent_id': self.agents[i].agent_id,
'proposal': proposal,
'timestamp': datetime.now()
})
return valid_proposals
Hierarchical Coordination (7 minutes)¶
Coordinator-worker patterns:
class HierarchicalCoordinator:
"""Implements hierarchical multi-agent coordination patterns"""
def __init__(self):
self.coordinator_agents: Dict[str, 'CoordinatorAgent'] = {}
self.worker_agents: Dict[str, 'WorkerAgent'] = {}
self.delegation_rules: Dict[str, List[str]] = {}
async def create_coordination_hierarchy(
self, task: str, complexity_analysis: Dict[str, Any]
) -> Dict[str, Any]:
"""Create hierarchical coordination structure"""
# Analyze task decomposition requirements
decomposition = await self._analyze_task_decomposition(task, complexity_analysis)
# Create coordinator for high-level planning
coordinator = await self._create_task_coordinator(decomposition)
# Create workers for execution
workers = await self._create_worker_agents(decomposition)
# Establish delegation relationships
delegation_map = await self._establish_delegation_hierarchy(
coordinator, workers, decomposition
)
return {
'coordinator': coordinator,
'workers': workers,
'delegation_map': delegation_map,
'hierarchy_depth': decomposition['required_levels']
}
async def execute_hierarchical_task(
self, task: str, hierarchy: Dict[str, Any]
) -> Dict[str, Any]:
"""Execute task using hierarchical coordination"""
# Phase 1: High-level planning
high_level_plan = await self._create_high_level_plan(
task, hierarchy['coordinator']
)
# Phase 2: Task delegation and parallel execution
delegation_results = await self._execute_delegated_tasks(
high_level_plan, hierarchy['delegation_map']
)
# Phase 3: Result aggregation
final_result = await self._aggregate_hierarchical_results(
delegation_results, hierarchy['coordinator']
)
return {
'task': task,
'result': final_result,
'execution_success': True
}
Auction-Based Coordination (5 minutes)¶
Market-based task allocation:
File: src/session9/auction_mechanisms.py
- Competitive coordination
class SimpleAuctionCoordinator:
"""Basic auction-based task allocation"""
def __init__(self, agents: List['BaseAgent']):
self.agents = agents
self.auction_history: List[Dict[str, Any]] = []
async def conduct_simple_auction(
self, task: str, requirements: Dict[str, Any]
) -> Dict[str, Any]:
"""Conduct sealed-bid auction for task allocation"""
# Phase 1: Assess agent capabilities
capability_assessments = await self._assess_agent_capabilities(
task, requirements
)
# Filter eligible agents
eligible_agents = [
agent for agent, assessment in capability_assessments.items()
if assessment['meets_requirements']
]
if not eligible_agents:
return {'success': False, 'reason': 'No eligible agents'}
# Phase 2: Collect bids
bids = await self._collect_sealed_bids(task, eligible_agents, requirements)
# Phase 3: Select winner (lowest cost, highest capability)
winner = await self._select_auction_winner(bids, requirements)
if winner:
return {
'success': True,
'winner': winner['agent_id'],
'winning_bid': winner['bid'],
'task': task
}
else:
return {'success': False, 'reason': 'No valid bids received'}
Part 3: Planning & Reflection (25 minutes)¶
Cognitive Load: 3 new concepts
Learning Mode: Application & Strategy
Hierarchical Task Network Planning (10 minutes)¶
Breaking complex tasks into manageable hierarchies:
This diagram illustrates Hierarchical Task Network (HTN) planning methodology, showing how complex tasks are decomposed into smaller, manageable subtasks. The visualization demonstrates the hierarchical breakdown from abstract goals to concrete, executable actions.
File: src/session9/planning_systems.py
- HTN planning implementation
from typing import Dict, List, Any, Optional, Tuple
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime, timedelta
class TaskType(Enum):
PRIMITIVE = "primitive" # Directly executable
COMPOUND = "compound" # Requires decomposition
ABSTRACT = "abstract" # High-level goal
@dataclass
class Task:
"""Represents a task in the HTN hierarchy"""
task_id: str
name: str
task_type: TaskType
parameters: Dict[str, Any] = field(default_factory=dict)
preconditions: List[str] = field(default_factory=list)
effects: List[str] = field(default_factory=list)
estimated_duration: Optional[timedelta] = None
priority: int = 1
@dataclass
class TaskDecomposition:
"""Represents a way to decompose a compound task"""
decomposition_id: str
subtasks: List[Task]
ordering_constraints: List[Tuple[str, str]] = field(default_factory=list)
success_probability: float = 1.0
class HTNPlanner:
"""Hierarchical Task Network planner"""
def __init__(self, agent, domain_knowledge: Dict[str, Any]):
self.agent = agent
self.domain = domain_knowledge
self.current_plan: Optional[List[Task]] = None
self.planning_history: List[Dict[str, Any]] = []
async def create_hierarchical_plan(
self, goal: str, initial_state: Dict[str, Any]
) -> Dict[str, Any]:
"""Create hierarchical plan using HTN methodology"""
# Phase 1: Goal analysis and task creation
root_task = await self._create_root_task(goal, initial_state)
# Phase 2: Hierarchical decomposition
decomposition_result = await self._decompose_task_hierarchy(
root_task, initial_state
)
# Phase 3: Plan optimization
optimized_plan = await self._optimize_plan(
decomposition_result['plan'], initial_state
)
# Phase 4: Risk assessment
risk_analysis = await self._analyze_plan_risks(
optimized_plan, initial_state
)
return {
'plan': optimized_plan,
'risk_analysis': risk_analysis,
'confidence': decomposition_result['confidence'],
'estimated_duration': sum(
t.estimated_duration or timedelta(0) for t in optimized_plan
)
}
Dynamic Replanning (8 minutes)¶
Adaptive planning during execution:
File: src/session9/dynamic_planning.py
- Adaptive replanning systems
class DynamicReplanner:
"""Handles dynamic replanning during plan execution"""
def __init__(self, htn_planner: HTNPlanner):
self.planner = htn_planner
self.monitoring_active = False
self.replanning_history: List[Dict[str, Any]] = []
async def execute_with_replanning(
self, plan: List[Task], initial_state: Dict[str, Any]
) -> Dict[str, Any]:
"""Execute plan with continuous monitoring and replanning"""
current_state = initial_state.copy()
remaining_tasks = plan.copy()
completed_tasks = []
execution_trace = []
self.monitoring_active = True
while remaining_tasks and self.monitoring_active:
current_task = remaining_tasks[0]
# Pre-execution validation
validation_result = await self._validate_task_execution(
current_task, current_state
)
if not validation_result['can_execute']:
# Trigger replanning
replanning_result = await self._trigger_replanning(
current_task, remaining_tasks, current_state,
validation_result['reason']
)
if replanning_result['success']:
remaining_tasks = replanning_result['new_plan']
execution_trace.append(('replan', replanning_result))
continue
else:
execution_trace.append(('failure', replanning_result))
break
# Execute task
execution_result = await self._execute_monitored_task(
current_task, current_state
)
execution_trace.append(('execute', execution_result))
if execution_result['success']:
# Update state and continue
current_state = self._apply_task_effects(
current_task, current_state, execution_result
)
completed_tasks.append(current_task)
remaining_tasks.pop(0)
else:
# Handle execution failure
failure_analysis = await self._analyze_execution_failure(
current_task, execution_result
)
if failure_analysis['should_replan']:
replanning_result = await self._trigger_replanning(
current_task, remaining_tasks, current_state,
execution_result['error']
)
if replanning_result['success']:
remaining_tasks = replanning_result['new_plan']
continue
execution_trace.append(('abort', failure_analysis))
break
return {
'completed_tasks': completed_tasks,
'remaining_tasks': remaining_tasks,
'final_state': current_state,
'execution_trace': execution_trace,
'success': len(remaining_tasks) == 0
}
Reflection and Learning (7 minutes)¶
Continuous improvement through experience:
This visualization shows the reflection and learning cycle where agents analyze their execution experiences, identify patterns, assess performance trends, and adapt their strategies. The diagram demonstrates how continuous learning improves agent performance over time.
File: src/session9/reflection_engine.py
- Learning from execution
class ReflectionEngine:
"""Implements reflection patterns for continuous improvement"""
def __init__(self, agent):
self.agent = agent
self.experience_buffer: List[Dict[str, Any]] = []
self.learned_patterns: Dict[str, Any] = {}
self.performance_metrics: Dict[str, List[float]] = {}
async def reflect_on_execution(
self, execution_result: Dict[str, Any]
) -> Dict[str, Any]:
"""Conduct comprehensive reflection on execution experience"""
# Phase 1: Experience analysis
experience_analysis = await self._analyze_execution_experience(
execution_result
)
# Phase 2: Pattern identification
patterns = await self._identify_learning_patterns(
experience_analysis, self.experience_buffer
)
# Phase 3: Performance assessment
performance_assessment = await self._assess_performance_trends(
execution_result, patterns
)
# Phase 4: Strategy adaptation
adaptations = await self._generate_strategy_adaptations(
patterns, performance_assessment
)
# Phase 5: Knowledge integration
integration_result = await self._integrate_learned_knowledge(
patterns, adaptations
)
# Store experience for future learning
self.experience_buffer.append({
'execution_result': execution_result,
'reflection': {
'analysis': experience_analysis,
'patterns': patterns,
'performance': performance_assessment,
'adaptations': adaptations
},
'timestamp': datetime.now()
})
# Prune old experiences if buffer is too large
if len(self.experience_buffer) > 500:
self.experience_buffer = self.experience_buffer[-400:]
return {
'reflection_summary': experience_analysis['summary'],
'identified_patterns': patterns,
'performance_insights': performance_assessment,
'recommended_adaptations': adaptations,
'integration_success': integration_result
}
Part 4: Basic Production Patterns (10 minutes)¶
Cognitive Load: 2 new concepts Learning Mode: Deployment Ready
Production Configuration (5 minutes)¶
Basic production setup for multi-agent systems:
File: src/session9/production_deployment.py
- Production patterns
from dataclasses import dataclass
from typing import Dict, List, Any
from datetime import timedelta
import logging
@dataclass
class BasicProductionConfig:
"""Basic configuration for production multi-agent systems"""
max_agents: int = 20
consensus_timeout: timedelta = timedelta(seconds=15)
health_check_interval: timedelta = timedelta(seconds=5)
enable_monitoring: bool = True
log_level: str = "INFO"
class BasicProductionSystem:
"""Basic production multi-agent system"""
def __init__(self, config: BasicProductionConfig):
self.config = config
self.agents: Dict[str, 'BaseAgent'] = {}
self._setup_logging()
def _setup_logging(self):
"""Setup production logging"""
logging.basicConfig(
level=getattr(logging, self.config.log_level),
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
async def deploy_agent(self, agent: 'BaseAgent') -> Dict[str, Any]:
"""Deploy agent with basic validation"""
# Basic validation
if len(self.agents) >= self.config.max_agents:
return {'success': False, 'error': 'Maximum agents reached'}
if agent.agent_id in self.agents:
return {'success': False, 'error': 'Agent ID already exists'}
# Register agent
self.agents[agent.agent_id] = agent
# Basic health check
health = await self._basic_health_check(agent)
if not health['healthy']:
del self.agents[agent.agent_id]
return {'success': False, 'error': 'Agent failed health check'}
logging.info(f"Agent {agent.agent_id} deployed successfully")
return {
'success': True,
'agent_id': agent.agent_id,
'deployment_time': datetime.now()
}
async def _basic_health_check(self, agent: 'BaseAgent') -> Dict[str, Any]:
"""Perform basic agent health check"""
try:
# Test basic functionality
test_response = await agent.process_simple_request("health check")
return {
'healthy': bool(test_response),
'response_time': 'measured_time_here'
}
except Exception as e:
return {
'healthy': False,
'error': str(e)
}
Basic Monitoring (5 minutes)¶
Essential monitoring for multi-agent systems:
class BasicSystemMonitor:
"""Basic monitoring for multi-agent systems"""
def __init__(self, system: BasicProductionSystem):
self.system = system
self.metrics: Dict[str, List[Any]] = {
'agent_health': [],
'message_count': [],
'error_count': []
}
async def collect_basic_metrics(self) -> Dict[str, Any]:
"""Collect basic system metrics"""
# Agent health metrics
healthy_agents = 0
for agent_id, agent in self.system.agents.items():
health = await self.system._basic_health_check(agent)
if health['healthy']:
healthy_agents += 1
return {
'timestamp': datetime.now(),
'total_agents': len(self.system.agents),
'healthy_agents': healthy_agents,
'system_health': healthy_agents / len(self.system.agents) if self.system.agents else 0
}
async def generate_basic_report(self) -> str:
"""Generate basic system status report"""
metrics = await self.collect_basic_metrics()
return f"""
Basic Multi-Agent System Report
================================
Time: {metrics['timestamp']}
Total Agents: {metrics['total_agents']}
Healthy Agents: {metrics['healthy_agents']}
System Health: {metrics['system_health']:.2%}
"""
Core Section Validation (5 minutes)¶
Quick Implementation Exercise¶
🗂️ Exercise Files:
src/session9/react_agent.py
- ReAct pattern implementationsrc/session9/multi_agent_coordination.py
- Multi-agent coordination
# Try the examples:
cd src/session9
python react_agent.py # ReAct reasoning
python multi_agent_coordination.py # Agent coordination
python planning_systems.py # HTN planning
Self-Assessment Checklist¶
- I understand the ReAct pattern and transparent reasoning
- I can implement basic multi-agent communication
- I understand hierarchical planning concepts
- I know basic production patterns for multi-agent systems
- I'm ready for advanced modules or next session
Next Session Prerequisites: ✅ Core Section Complete Ready for: Session 10: Enterprise Integration & Production Deployment
️ OPTIONAL MODULES (Choose Your Adventure)¶
🧭 Choose Your Learning Path: - Module A: Advanced Consensus Algorithms → (70 min) - Byzantine fault tolerance & game theory - Module B: Production Multi-Agent Systems → (70 min) - Enterprise deployment & monitoring
Complete Learning Path Options¶
Research Focus: Core → Module A (for advanced algorithms)
Production Focus: Core → Module B (for enterprise deployment)
Comprehensive: Core → Module A → Module B
Progress Tracking¶
Completion Status¶
- Core Section (90 min) - Essential for next session
- Module A: Advanced Consensus Algorithms (70 min)
- Module B: Production Multi-Agent Systems (70 min)
🗂️ All Code Examples: Available in src/session9/
- 12 Python files with complete multi-agent implementations!
Multiple Choice Test - Session 9 (15 minutes)¶
Test your understanding of multi-agent patterns and coordination strategies.
Question 1¶
What does "ReAct" stand for in the ReAct pattern?
A) Read and Act
B) Reasoning and Acting
C) Reflect and Act
D) Retrieve and Act
Question 2¶
What is the primary benefit of the ReAct pattern over direct prompting?
A) Faster execution
B) Transparent reasoning with step-by-step thought processes
C) Lower cost
D) Simpler implementation
Question 3¶
In multi-agent systems, what is the purpose of a Communication Hub?
A) Store data
B) Coordinate message passing between agents
C) Execute agent logic
D) Manage user interface
Question 4¶
What determines when the ReAct reasoning loop terminates?
A) Fixed number of steps
B) When final_answer action is reached or max steps exceeded
C) User intervention
D) Random timing
Question 5¶
How do agents typically reach consensus in multi-agent systems?
A) First agent decides
B) Voting mechanisms and consensus algorithms
C) Random selection
D) Manager override
Question 6¶
What is the main advantage of hierarchical coordination patterns?
A) Faster execution
B) Clear command structure with specialized delegation
C) Lower resource usage
D) Simpler implementation
Question 7¶
In auction-based coordination, how are tasks typically allocated?
A) Random assignment
B) Based on agent capabilities and bid evaluation
C) First-come first-served
D) Manager assignment
Question 8¶
What is the purpose of Hierarchical Task Network (HTN) planning?
A) Simple task execution
B) Breaking complex tasks into manageable hierarchies
C) Agent communication
D) Error handling
Question 9¶
How does dynamic replanning differ from static planning?
A) No difference
B) Adapts plans during execution based on changing conditions
C) Plans are created faster
D) Uses different algorithms
Question 10¶
What is the main benefit of reflection patterns in multi-agent systems?
A) Faster execution
B) Continuous learning and improvement from experience
C) Lower costs
D) Simpler deployment
Navigation¶
Previous: Session 8 - Agno Production Ready Agents
Optional Deep Dive Modules:
- 🔬 Module A: Advanced Consensus Algorithms - Advanced coordination patterns
- 🏭 Module B: Production Multi-Agent Systems - Enterprise deployment
Next: Session 10 - Enterprise Integration & Production Deployment →