Skip to content

📝 Session 9: Implementation Guide - Planning & Production Systems

📝 PARTICIPANT PATH CONTENT Prerequisites: Complete 🎯 Multi-Agent Patterns and 📝 Practical Coordination Time Investment: 1.5-2 hours Outcome: Implement planning systems and production-ready multi-agent deployments

Learning Outcomes

After completing this module, you will:

  • Build hierarchical task network planning systems for complex data workflows
  • Implement dynamic replanning capabilities for adaptive multi-agent systems
  • Deploy production-ready multi-agent systems with monitoring and health checks
  • Create basic monitoring and observability systems for multi-agent coordination

Hierarchical Task Network Implementation

Building practical HTN planning systems for coordinated multi-agent data processing:

File: src/session9/planning_systems.py - HTN planning for data processing implementation

Task Decomposition Structure

@dataclass
class DataTaskDecomposition:
    """Represents a way to decompose a compound data processing task"""
    decomposition_id: str
    subtasks: List[DataTask]
    data_flow_constraints: List[Tuple[str, str]] = field(default_factory=list)
    processing_success_probability: float = 1.0

Task decomposition structures enable sophisticated multi-agent coordination strategies. Each decomposition represents a different way to break down complex tasks into manageable components.

HTN Planner Implementation

class DataHTNPlanner:
    """Hierarchical Task Network planner for data processing"""

    def __init__(self, agent, data_domain_knowledge: Dict[str, Any]):
        self.agent = agent
        self.data_domain = data_domain_knowledge
        self.current_pipeline_plan: Optional[List[DataTask]] = None
        self.data_planning_history: List[Dict[str, Any]] = []

    async def create_hierarchical_data_plan(
        self, data_goal: str, initial_data_state: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Create hierarchical data processing plan using HTN methodology"""

        # Phase 1: Data goal analysis and task creation
        root_task = await self._create_root_data_task(data_goal, initial_data_state)

        # Phase 2: Hierarchical data processing decomposition
        decomposition_result = await self._decompose_data_task_hierarchy(
            root_task, initial_data_state
        )

        # Phase 3: Data pipeline optimization
        optimized_plan = await self._optimize_data_plan(
            decomposition_result['plan'], initial_data_state
        )

        # Phase 4: Data quality and consistency risk assessment
        risk_analysis = await self._analyze_data_plan_risks(
            optimized_plan, initial_data_state
        )

        return {
            'data_plan': optimized_plan,
            'risk_analysis': risk_analysis,
            'confidence': decomposition_result['confidence'],
            'estimated_processing_duration': sum(
                t.estimated_duration or timedelta(0) for t in optimized_plan
            )
        }

The four-phase planning process mirrors enterprise data engineering workflows. Goal analysis translates business requirements into executable tasks, while hierarchical decomposition breaks down complex objectives.

Task Decomposition Algorithm

async def _decompose_data_task_hierarchy(
    self, root_task: DataTask, data_state: Dict[str, Any]
) -> Dict[str, Any]:
    """Decompose data processing task using hierarchical method"""

    decomposition_queue = [root_task]
    final_plan = []
    confidence_scores = []

    while decomposition_queue:
        current_task = decomposition_queue.pop(0)

        if current_task.task_type == DataTaskType.PRIMITIVE:
            # Task can be executed directly
            final_plan.append(current_task)
            confidence_scores.append(0.9)

        elif current_task.task_type == DataTaskType.COMPOUND:
            # Task needs decomposition
            decomposition = await self._find_task_decomposition(current_task, data_state)

            if decomposition:
                # Add subtasks to processing queue
                decomposition_queue.extend(decomposition.subtasks)
                confidence_scores.append(decomposition.processing_success_probability)
            else:
                # Fallback: treat as primitive if no decomposition found
                final_plan.append(current_task)
                confidence_scores.append(0.5)

        elif current_task.task_type == DataTaskType.ABSTRACT:
            # High-level goal needs compound decomposition
            compound_tasks = await self._abstract_to_compound_decomposition(
                current_task, data_state
            )
            decomposition_queue.extend(compound_tasks)

    return {
        'plan': final_plan,
        'confidence': sum(confidence_scores) / len(confidence_scores) if confidence_scores else 0.5
    }

The decomposition algorithm processes tasks based on their complexity type. PRIMITIVE tasks execute directly, COMPOUND tasks are broken down into subtasks, and ABSTRACT tasks are converted to compound tasks.

Dynamic Replanning Implementation

Building adaptive systems that adjust to changing conditions during execution:

File: src/session9/planning_systems.py - Adaptive data processing replanning systems (DynamicReplanner class)

Adaptive Execution Engine

class DynamicDataReplanner:
    """Handles dynamic replanning during data pipeline execution"""

    def __init__(self, htn_planner: DataHTNPlanner):
        self.data_planner = htn_planner
        self.monitoring_active = False
        self.data_replanning_history: List[Dict[str, Any]] = []

    async def execute_with_data_replanning(
        self, data_plan: List[DataTask], initial_data_state: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Execute data plan with continuous monitoring and replanning"""

        current_data_state = initial_data_state.copy()
        remaining_tasks = data_plan.copy()
        completed_tasks = []
        execution_trace = []

        self.monitoring_active = True

        while remaining_tasks and self.monitoring_active:
            current_task = remaining_tasks[0]

            # Pre-execution data validation
            validation_result = await self._validate_data_task_execution(
                current_task, current_data_state
            )

            if not validation_result['can_execute']:
                # Trigger data processing replanning
                replanning_result = await self._trigger_data_replanning(
                    current_task, remaining_tasks, current_data_state,
                    validation_result['reason']
                )

                if replanning_result['success']:
                    remaining_tasks = replanning_result['new_data_plan']
                    execution_trace.append(('data_replan', replanning_result))
                    continue
                else:
                    execution_trace.append(('data_failure', replanning_result))
                    break

            # Execute data processing task
            execution_result = await self._execute_monitored_data_task(
                current_task, current_data_state
            )

            execution_trace.append(('data_execute', execution_result))

            if execution_result['success']:
                # Update data state and continue
                current_data_state = self._apply_data_task_effects(
                    current_task, current_data_state, execution_result
                )
                completed_tasks.append(current_task)
                remaining_tasks.pop(0)
            else:
                # Handle data processing failure
                failure_analysis = await self._analyze_data_execution_failure(
                    current_task, execution_result
                )

                if failure_analysis['should_replan']:
                    replanning_result = await self._trigger_data_replanning(
                        current_task, remaining_tasks, current_data_state,
                        execution_result['error']
                    )

                    if replanning_result['success']:
                        remaining_tasks = replanning_result['new_data_plan']
                        continue

                execution_trace.append(('data_abort', failure_analysis))
                break

        return {
            'completed_data_tasks': completed_tasks,
            'remaining_data_tasks': remaining_tasks,
            'final_data_state': current_data_state,
            'data_execution_trace': execution_trace,
            'success': len(remaining_tasks) == 0
        }

The validation-before-execution pattern prevents cascading failures in multi-agent data systems. When agents detect precondition failures, they trigger collaborative replanning rather than blindly executing tasks.

Intelligent Failure Analysis

async def _analyze_data_execution_failure(
    self, failed_task: DataTask, execution_result: Dict[str, Any]
) -> Dict[str, Any]:
    """Analyze data processing failure to determine recovery strategy"""

    failure_type = self._classify_failure_type(execution_result['error'])

    recovery_strategies = {
        'transient_network': {'should_replan': False, 'retry_count': 3},
        'resource_exhaustion': {'should_replan': True, 'strategy': 'scale_down'},
        'data_quality_failure': {'should_replan': True, 'strategy': 'add_validation'},
        'schema_mismatch': {'should_replan': True, 'strategy': 'schema_adaptation'},
        'dependency_missing': {'should_replan': True, 'strategy': 'dependency_resolution'}
    }

    strategy = recovery_strategies.get(failure_type, {'should_replan': True, 'strategy': 'fallback'})

    return {
        'failure_type': failure_type,
        'should_replan': strategy['should_replan'],
        'recommended_strategy': strategy.get('strategy', 'retry'),
        'task_id': failed_task.task_id,
        'failure_analysis': execution_result
    }

Failure handling demonstrates sophisticated multi-agent decision-making. Not all failures justify replanning - transient network issues might require simple retries, while fundamental data quality problems need complete strategy revision.

Replanning Trigger System

async def _trigger_data_replanning(
    self, failed_task: DataTask, remaining_tasks: List[DataTask],
    current_state: Dict[str, Any], failure_reason: str
) -> Dict[str, Any]:
    """Trigger replanning process for data processing failure recovery"""

    # Create new planning context including failure information
    replanning_context = {
        'failed_task': failed_task,
        'failure_reason': failure_reason,
        'current_data_state': current_state,
        'remaining_objectives': [task.name for task in remaining_tasks],
        'execution_constraints': await self._analyze_execution_constraints(current_state)
    }

    # Generate alternative plan using HTN planner
    alternative_plan_result = await self.data_planner.create_hierarchical_data_plan(
        f"Recovery from {failure_reason}: {failed_task.name}",
        replanning_context
    )

    if alternative_plan_result['confidence'] > 0.6:
        # Record replanning event
        self.data_replanning_history.append({
            'original_task': failed_task.task_id,
            'failure_reason': failure_reason,
            'new_plan_confidence': alternative_plan_result['confidence'],
            'timestamp': datetime.now()
        })

        return {
            'success': True,
            'new_data_plan': alternative_plan_result['data_plan'],
            'replanning_confidence': alternative_plan_result['confidence'],
            'recovery_strategy': 'hierarchical_replanning'
        }
    else:
        return {
            'success': False,
            'reason': 'Unable to generate viable alternative plan',
            'attempted_confidence': alternative_plan_result['confidence']
        }

The replanning trigger creates new execution strategies when original plans fail. By including failure context in the planning process, the system can avoid repeating the same mistakes.

Production Deployment Implementation

Building enterprise-ready multi-agent systems with monitoring and reliability features:

Advanced Production Configuration

@dataclass
class AdvancedDataProductionConfig:
    """Advanced configuration for enterprise multi-agent data processing systems"""
    max_data_agents: int = 100
    consensus_timeout: timedelta = timedelta(seconds=45)
    data_health_check_interval: timedelta = timedelta(seconds=5)
    enable_data_monitoring: bool = True
    enable_performance_metrics: bool = True
    log_level: str = "INFO"
    data_processing_batch_size: int = 50000
    max_parallel_streams: int = 16
    agent_failure_threshold: int = 3
    automatic_recovery: bool = True
    monitoring_retention_days: int = 30

Advanced configuration adds enterprise features like failure thresholds, automatic recovery, and retention policies. These settings enable production deployments that can handle varying loads and recover from failures automatically.

Production System with Health Monitoring

class AdvancedDataProductionSystem(BasicDataProductionSystem):
    """Advanced production multi-agent data processing system"""

    def __init__(self, config: AdvancedDataProductionConfig):
        super().__init__(config)
        self.config = config
        self.monitoring_active = False
        self.performance_metrics = AdvancedDataSystemMonitor(self)

    async def start_production_monitoring(self):
        """Start comprehensive monitoring for production deployment"""
        self.monitoring_active = True

        # Start health check monitoring
        asyncio.create_task(self._continuous_health_monitoring())

        # Start performance metrics collection
        if self.config.enable_performance_metrics:
            asyncio.create_task(self._performance_metrics_collection())

        # Start automatic recovery system
        if self.config.automatic_recovery:
            asyncio.create_task(self._automatic_recovery_monitoring())

Production monitoring includes three concurrent systems: health checking for agent status, performance metrics for system optimization, and automatic recovery for failure handling.

Continuous Health Monitoring

async def _continuous_health_monitoring(self):
    """Continuously monitor agent health and system status"""
    while self.monitoring_active:
        try:
            # Check health of all registered agents
            health_results = []
            for agent_id, agent in self.data_agents.items():
                health = await self._comprehensive_data_health_check(agent)
                health_results.append((agent_id, health))

                # Track unhealthy agents for recovery
                if not health['healthy']:
                    await self._handle_unhealthy_agent(agent_id, agent, health)

            # Log system-wide health summary
            healthy_count = sum(1 for _, h in health_results if h['healthy'])
            total_count = len(health_results)

            logging.info(f"[DATA] System health check: {healthy_count}/{total_count} agents healthy")

            # Wait for next health check interval
            await asyncio.sleep(self.config.data_health_check_interval.total_seconds())

        except Exception as e:
            logging.error(f"[DATA] Health monitoring error: {e}")
            await asyncio.sleep(5)  # Brief pause before retry

Continuous health monitoring tracks agent status in real-time and provides automated response to failures. The monitoring loop runs independently of agent processing, ensuring that system health visibility remains available even during high-load periods.

Comprehensive Health Check

async def _comprehensive_data_health_check(self, agent: 'BaseDataAgent') -> Dict[str, Any]:
    """Perform comprehensive health check on data processing agent"""
    health_result = {
        'healthy': True,
        'checks': {},
        'timestamp': datetime.now()
    }

    try:
        # Basic connectivity test
        start_time = time.time()
        basic_response = await asyncio.wait_for(
            agent.process_data_sample("health_check"),
            timeout=10.0
        )
        response_time = time.time() - start_time

        health_result['checks']['connectivity'] = {
            'passed': bool(basic_response),
            'response_time_ms': response_time * 1000
        }

        # Resource utilization check
        resource_check = await self._check_agent_resource_usage(agent)
        health_result['checks']['resources'] = resource_check

        # Message queue health
        queue_health = await self._check_agent_message_queue(agent)
        health_result['checks']['message_queue'] = queue_health

        # Overall health determination
        health_result['healthy'] = all(
            check.get('passed', True) for check in health_result['checks'].values()
        )

        return health_result

    except asyncio.TimeoutError:
        health_result['healthy'] = False
        health_result['checks']['timeout'] = {'passed': False, 'reason': 'Agent response timeout'}
        return health_result
    except Exception as e:
        health_result['healthy'] = False
        health_result['checks']['error'] = {'passed': False, 'error': str(e)}
        return health_result

Comprehensive health checks validate multiple agent capabilities including basic connectivity, resource utilization, and message processing. The timeout handling ensures that unresponsive agents don't block the monitoring system.

Advanced Monitoring Implementation

Building observability systems for production multi-agent deployments:

Performance Metrics Collection

class AdvancedDataSystemMonitor(BasicDataSystemMonitor):
    """Advanced monitoring for production multi-agent data processing systems"""

    def __init__(self, system: AdvancedDataProductionSystem):
        super().__init__(system)
        self.system = system
        self.detailed_metrics = {
            'throughput_history': [],
            'latency_percentiles': [],
            'error_rates': [],
            'coordination_efficiency': [],
            'resource_utilization': []
        }

    async def collect_advanced_metrics(self) -> Dict[str, Any]:
        """Collect comprehensive system performance metrics"""

        timestamp = datetime.now()

        # Collect throughput metrics across all agents
        throughput_data = await self._collect_throughput_metrics()

        # Measure coordination efficiency
        coordination_metrics = await self._measure_coordination_efficiency()

        # Assess resource utilization
        resource_metrics = await self._assess_system_resource_usage()

        # Calculate latency percentiles
        latency_metrics = await self._calculate_latency_percentiles()

        # Error rate analysis
        error_metrics = await self._analyze_error_rates()

        comprehensive_metrics = {
            'timestamp': timestamp,
            'throughput': throughput_data,
            'coordination_efficiency': coordination_metrics,
            'resource_utilization': resource_metrics,
            'latency_percentiles': latency_metrics,
            'error_rates': error_metrics,
            'system_health_score': self._calculate_overall_system_health()
        }

        # Store for trend analysis
        self._store_metrics_for_trends(comprehensive_metrics)

        return comprehensive_metrics

Advanced metrics collection provides comprehensive visibility into system performance across multiple dimensions. The metrics cover throughput, coordination efficiency, resource usage, latency distribution, and error patterns.

Automated Report Generation

async def generate_production_status_report(self) -> str:
    """Generate comprehensive production status report"""

    metrics = await self.collect_advanced_metrics()

    return f"""
Production Multi-Agent Data Processing System Report
==================================================
Report Generated: {metrics['timestamp']}

SYSTEM OVERVIEW

--------------
Total Agents: {len(self.system.data_agents)}
System Health Score: {metrics['system_health_score']:.2f}/10.0
Overall Status: {'HEALTHY' if metrics['system_health_score'] > 7.0 else 'DEGRADED' if metrics['system_health_score'] > 4.0 else 'CRITICAL'}

PERFORMANCE METRICS

------------------
Total Throughput: {metrics['throughput']['total_rps']:,} records/sec
Average Latency: {metrics['latency_percentiles']['p50']:.2f}ms
95th Percentile Latency: {metrics['latency_percentiles']['p95']:.2f}ms
99th Percentile Latency: {metrics['latency_percentiles']['p99']:.2f}ms

COORDINATION EFFICIENCY

----------------------
Message Success Rate: {metrics['coordination_efficiency']['message_success_rate']:.2%}
Consensus Success Rate: {metrics['coordination_efficiency']['consensus_success_rate']:.2%}
Average Coordination Overhead: {metrics['coordination_efficiency']['overhead_ms']:.2f}ms

RESOURCE UTILIZATION

-------------------
Average CPU Usage: {metrics['resource_utilization']['avg_cpu_percent']:.1f}%
Average Memory Usage: {metrics['resource_utilization']['avg_memory_percent']:.1f}%
Network Utilization: {metrics['resource_utilization']['network_mbps']:.2f} Mbps

ERROR ANALYSIS

--------------
Error Rate: {metrics['error_rates']['total_error_rate']:.4%}
Most Common Error: {metrics['error_rates']['most_common_error']}
Critical Errors (last hour): {metrics['error_rates']['critical_errors_count']}

RECOMMENDATIONS

--------------
{self._generate_performance_recommendations(metrics)}
"""

Automated reporting transforms raw metrics into actionable insights for operations teams. The report includes health assessment, performance analysis, and specific recommendations for system optimization.

📝 Practice Exercises

Exercise 1: HTN Planning Implementation

Build a complete HTN planner for data pipeline orchestration:

# Your task: Implement HTN planning for ETL workflows
class ETLHTNPlanner(DataHTNPlanner):
    async def plan_etl_workflow(
        self, source_configs: List[Dict], target_schema: Dict, transformations: List[str]
    ) -> Dict[str, Any]:
        """Plan ETL workflow using hierarchical task decomposition"""
        # TODO: Implement HTN planning for ETL
        # 1. Create abstract goal: "Process ETL workflow"
        # 2. Decompose into compound tasks: Extract, Transform, Load
        # 3. Break down compound tasks into primitive operations
        # 4. Optimize task ordering and dependencies
        # 5. Generate execution plan with resource allocation
        pass

Exercise 2: Dynamic Replanning System

Implement adaptive replanning for data quality failures:

# Your task: Build adaptive replanning for data quality issues
class DataQualityReplanner(DynamicDataReplanner):
    async def handle_data_quality_failure(
        self, failed_task: DataTask, quality_metrics: Dict[str, float]
    ) -> Dict[str, Any]:
        """Handle data quality failure with adaptive replanning"""
        # TODO: Implement quality-aware replanning
        # 1. Analyze quality failure patterns
        # 2. Generate alternative processing strategies
        # 3. Apply data cleaning and validation steps
        # 4. Adjust quality thresholds if needed
        # 5. Create recovery plan with enhanced validation
        pass

Exercise 3: Production Monitoring Dashboard

Create a monitoring system with alerting capabilities:

# Your task: Implement production monitoring with alerts
class ProductionMonitoringDashboard(AdvancedDataSystemMonitor):
    async def setup_monitoring_alerts(
        self, alert_thresholds: Dict[str, float]
    ) -> Dict[str, Any]:
        """Setup monitoring alerts for production system"""
        # TODO: Implement alerting system
        # 1. Define alert conditions (latency, error rate, health)
        # 2. Create notification mechanisms (email, slack, etc.)
        # 3. Implement escalation policies
        # 4. Generate alert history and trend analysis
        # 5. Create dashboard for real-time visibility
        pass

Previous: Session 8 - Production Ready →
Next: Session 10 - Enterprise Integration →