Skip to content

⚙️ Session 9: Advanced Planning - Sophisticated HTN & Reflection Systems

⚙️ IMPLEMENTER PATH CONTENT Prerequisites: Complete 🎯 Observer Path, 📝 Participant Path, and previous ⚙️ Advanced modules Time Investment: 2-3 hours Outcome: Master sophisticated planning algorithms, dynamic replanning, and advanced reflection patterns

Advanced Learning Outcomes

After completing this module, you will master:

  • Sophisticated Hierarchical Task Network algorithms with constraint satisfaction
  • Advanced dynamic replanning with predictive failure modeling
  • Complex reflection and learning systems that adapt strategy based on experience
  • Enterprise-scale planning systems with distributed coordination and fault tolerance

Advanced HTN Planning Algorithms

Building sophisticated planning systems that handle complex constraints and optimization requirements:

Constraint-Aware HTN Planning

class AdvancedConstraintHTNPlanner(DataHTNPlanner):
    """Sophisticated HTN planner with constraint satisfaction and optimization"""

    def __init__(self, agent, domain_knowledge: Dict[str, Any]):
        super().__init__(agent, domain_knowledge)
        self.constraint_solver = ConstraintSolver()
        self.optimization_engine = PlanOptimizationEngine()
        self.resource_manager = ResourceManager()
        self.plan_validator = PlanValidator()

    async def create_constrained_hierarchical_plan(
        self, data_goal: str, initial_state: Dict[str, Any],
        constraints: List[Dict[str, Any]], optimization_objectives: Dict[str, float]
    ) -> Dict[str, Any]:
        """Create hierarchical plan satisfying complex constraints and optimization goals"""

        # Phase 1: Enhanced goal analysis with constraint integration
        enhanced_goal_analysis = await self._analyze_constrained_goal(
            data_goal, initial_state, constraints
        )

        if not enhanced_goal_analysis['feasible']:
            return {
                'plan_generated': False,
                'reason': 'Goal infeasible given constraints',
                'infeasibility_analysis': enhanced_goal_analysis['infeasibility_reasons']
            }

        # Phase 2: Constraint-aware task decomposition
        constrained_decomposition = await self._constrained_task_decomposition(
            enhanced_goal_analysis['root_task'], initial_state, constraints
        )

        # Phase 3: Multi-objective optimization
        optimized_plan = await self._multi_objective_plan_optimization(
            constrained_decomposition['candidate_plans'], optimization_objectives
        )

        # Phase 4: Resource allocation and scheduling
        resource_schedule = await self._create_resource_schedule(
            optimized_plan['optimal_plan'], constraints
        )

        # Phase 5: Plan validation and risk assessment
        validation_result = await self._validate_constrained_plan(
            optimized_plan['optimal_plan'], resource_schedule, constraints
        )

        return {
            'plan_generated': validation_result['valid'],
            'hierarchical_plan': optimized_plan['optimal_plan'] if validation_result['valid'] else None,
            'resource_schedule': resource_schedule if validation_result['valid'] else None,
            'optimization_scores': optimized_plan['objective_scores'],
            'constraint_satisfaction': validation_result['constraint_compliance'],
            'risk_assessment': validation_result['risk_factors'],
            'alternative_plans': optimized_plan.get('alternative_plans', [])
        }

Constraint-aware HTN planning enables sophisticated multi-agent coordination that respects resource limitations, timing constraints, and quality requirements while optimizing for multiple objectives.

Advanced Task Decomposition with Constraint Propagation

async def _constrained_task_decomposition(
    self, root_task: DataTask, initial_state: Dict[str, Any],
    constraints: List[Dict[str, Any]]
) -> Dict[str, Any]:
    """Decompose tasks while propagating and satisfying constraints"""

    decomposition_search = ConstrainedDecompositionSearch()
    candidate_plans = []

    # Create constraint propagation context
    constraint_context = await self._create_constraint_context(constraints, initial_state)

    # Initialize search with root task
    search_stack = [(root_task, constraint_context, [])]
    max_search_iterations = 1000
    iteration_count = 0

    while search_stack and iteration_count < max_search_iterations:
        current_task, current_constraints, partial_plan = search_stack.pop()
        iteration_count += 1

        if current_task.task_type == DataTaskType.PRIMITIVE:
            # Check if primitive task satisfies constraints
            constraint_check = await self._check_primitive_constraints(
                current_task, current_constraints
            )

            if constraint_check['satisfiable']:
                # Complete plan found
                complete_plan = partial_plan + [current_task]
                plan_quality = await self._evaluate_plan_quality(
                    complete_plan, constraint_context
                )

                candidate_plans.append({
                    'plan': complete_plan,
                    'quality_score': plan_quality['overall_score'],
                    'constraint_violations': constraint_check['violations'],
                    'resource_utilization': plan_quality['resource_efficiency']
                })

        elif current_task.task_type == DataTaskType.COMPOUND:
            # Find applicable decompositions
            applicable_decompositions = await self._find_constrained_decompositions(
                current_task, current_constraints
            )

            # Add each decomposition to search space
            for decomposition in applicable_decompositions:
                # Propagate constraints through decomposition
                propagated_constraints = await self._propagate_constraints(
                    decomposition, current_constraints
                )

                # Add subtasks to search stack
                for subtask in reversed(decomposition.subtasks):
                    search_stack.append((
                        subtask,
                        propagated_constraints,
                        partial_plan.copy()
                    ))

    # Sort candidate plans by quality and constraint satisfaction
    ranked_plans = sorted(
        candidate_plans,
        key=lambda p: (len(p['constraint_violations']), -p['quality_score'])
    )

    return {
        'candidate_plans': ranked_plans,
        'search_statistics': {
            'iterations': iteration_count,
            'plans_found': len(candidate_plans),
            'constraint_context': constraint_context
        }
    }

Advanced task decomposition with constraint propagation ensures that planning decisions at each level respect global constraints, preventing the generation of infeasible plans.

Multi-Objective Plan Optimization

async def _multi_objective_plan_optimization(
    self, candidate_plans: List[Dict], optimization_objectives: Dict[str, float]
) -> Dict[str, Any]:
    """Optimize plans across multiple objectives using Pareto optimization"""

    if not candidate_plans:
        return {'optimal_plan': None, 'reason': 'No candidate plans available'}

    # Calculate objective scores for each plan
    plan_evaluations = []
    for plan_candidate in candidate_plans:
        objective_scores = {}

        # Performance objective
        if 'performance' in optimization_objectives:
            objective_scores['performance'] = await self._evaluate_plan_performance(
                plan_candidate['plan']
            )

        # Resource efficiency objective
        if 'resource_efficiency' in optimization_objectives:
            objective_scores['resource_efficiency'] = await self._evaluate_resource_efficiency(
                plan_candidate['plan']
            )

        # Quality assurance objective
        if 'quality_assurance' in optimization_objectives:
            objective_scores['quality_assurance'] = await self._evaluate_quality_assurance(
                plan_candidate['plan']
            )

        # Risk minimization objective
        if 'risk_minimization' in optimization_objectives:
            objective_scores['risk_minimization'] = await self._evaluate_risk_minimization(
                plan_candidate['plan']
            )

        # Adaptability objective
        if 'adaptability' in optimization_objectives:
            objective_scores['adaptability'] = await self._evaluate_plan_adaptability(
                plan_candidate['plan']
            )

        plan_evaluations.append({
            'plan': plan_candidate['plan'],
            'objective_scores': objective_scores,
            'constraint_violations': plan_candidate['constraint_violations'],
            'base_quality': plan_candidate['quality_score']
        })

    # Apply Pareto optimization
    pareto_optimal_plans = await self._find_pareto_optimal_plans(
        plan_evaluations, optimization_objectives
    )

    # Select best plan using weighted objective combination
    best_plan = await self._select_best_plan_weighted(
        pareto_optimal_plans, optimization_objectives
    )

    return {
        'optimal_plan': best_plan['plan'],
        'objective_scores': best_plan['objective_scores'],
        'pareto_optimal_plans': pareto_optimal_plans,
        'alternative_plans': [p for p in pareto_optimal_plans if p != best_plan]
    }

Multi-objective optimization enables sophisticated trade-off analysis between competing goals like performance, resource usage, quality, and risk, finding optimal solutions in complex decision spaces.

Advanced Dynamic Replanning Systems

Building sophisticated replanning systems that predict failures and proactively adapt strategies:

Predictive Failure Modeling

class PredictiveReplanningSystem(DynamicDataReplanner):
    """Advanced replanning system with predictive failure modeling and proactive adaptation"""

    def __init__(self, htn_planner: AdvancedConstraintHTNPlanner):
        super().__init__(htn_planner)
        self.failure_predictor = FailurePredictionModel()
        self.adaptation_strategy_engine = AdaptationStrategyEngine()
        self.proactive_monitoring = ProactiveMonitoringSystem()

    async def execute_with_predictive_replanning(
        self, data_plan: List[DataTask], initial_state: Dict[str, Any],
        risk_tolerance: float = 0.7
    ) -> Dict[str, Any]:
        """Execute plan with predictive failure modeling and proactive replanning"""

        current_state = initial_state.copy()
        remaining_tasks = data_plan.copy()
        completed_tasks = []
        execution_trace = []
        proactive_replans = 0

        # Initialize predictive monitoring
        await self.proactive_monitoring.start_monitoring(data_plan, current_state)

        while remaining_tasks and self.monitoring_active:
            current_task = remaining_tasks[0]

            # Predictive failure analysis
            failure_prediction = await self.failure_predictor.predict_task_failure(
                current_task, current_state, remaining_tasks
            )

            # Proactive replanning decision
            if failure_prediction['failure_probability'] > (1.0 - risk_tolerance):
                proactive_replan_result = await self._execute_proactive_replanning(
                    current_task, remaining_tasks, current_state, failure_prediction
                )

                if proactive_replan_result['success']:
                    remaining_tasks = proactive_replan_result['new_plan']
                    proactive_replans += 1
                    execution_trace.append(('proactive_replan', proactive_replan_result))
                    continue

            # Standard execution with enhanced monitoring
            execution_result = await self._execute_with_enhanced_monitoring(
                current_task, current_state, failure_prediction
            )

            execution_trace.append(('task_execution', execution_result))

            if execution_result['success']:
                # Update state and continue
                current_state = self._apply_task_effects(
                    current_task, current_state, execution_result
                )
                completed_tasks.append(current_task)
                remaining_tasks.pop(0)

                # Update predictive models with successful execution
                await self.failure_predictor.update_success_model(
                    current_task, execution_result, current_state
                )
            else:
                # Reactive replanning with failure analysis
                reactive_replan = await self._execute_reactive_replanning(
                    current_task, remaining_tasks, current_state, execution_result
                )

                if reactive_replan['success']:
                    remaining_tasks = reactive_replan['new_plan']
                    execution_trace.append(('reactive_replan', reactive_replan))
                    continue
                else:
                    execution_trace.append(('execution_failure', reactive_replan))
                    break

        return {
            'execution_completed': len(remaining_tasks) == 0,
            'completed_tasks': completed_tasks,
            'remaining_tasks': remaining_tasks,
            'final_state': current_state,
            'execution_trace': execution_trace,
            'proactive_replans': proactive_replans,
            'predictive_accuracy': await self._calculate_prediction_accuracy(execution_trace)
        }

Predictive replanning systems anticipate potential failures and adapt execution strategies proactively, reducing system downtime and improving overall execution success rates.

Advanced Failure Prediction Model

class FailurePredictionModel:
    """Machine learning model for predicting task execution failures"""

    def __init__(self):
        self.historical_executions = []
        self.failure_patterns = {}
        self.success_patterns = {}
        self.feature_extractor = ExecutionFeatureExtractor()
        self.ml_model = GradientBoostingFailurePredictor()

    async def predict_task_failure(
        self, task: DataTask, current_state: Dict[str, Any],
        remaining_tasks: List[DataTask]
    ) -> Dict[str, Any]:
        """Predict probability and type of task execution failure"""

        # Extract comprehensive features
        task_features = await self._extract_task_features(task, current_state)
        context_features = await self._extract_context_features(
            current_state, remaining_tasks
        )
        historical_features = await self._extract_historical_features(
            task, current_state
        )

        combined_features = {
            **task_features,
            **context_features,
            **historical_features
        }

        # Generate failure probability prediction
        failure_probability = await self.ml_model.predict_failure_probability(
            combined_features
        )

        # Predict most likely failure types
        failure_types = await self.ml_model.predict_failure_types(
            combined_features
        )

        # Generate failure scenario analysis
        failure_scenarios = await self._generate_failure_scenarios(
            task, combined_features, failure_types
        )

        # Calculate confidence intervals
        prediction_confidence = await self._calculate_prediction_confidence(
            combined_features, failure_probability
        )

        return {
            'failure_probability': failure_probability,
            'prediction_confidence': prediction_confidence,
            'likely_failure_types': failure_types,
            'failure_scenarios': failure_scenarios,
            'mitigation_suggestions': await self._suggest_failure_mitigations(
                failure_scenarios, task, current_state
            ),
            'features_used': combined_features
        }

Advanced failure prediction models use machine learning to identify patterns in execution history and predict potential failures before they occur, enabling proactive system adaptation.

Sophisticated Reflection and Learning Systems

Building advanced reflection systems that continuously improve multi-agent coordination strategies:

Deep Learning Reflection Engine

class DeepLearningReflectionEngine(DataReflectionEngine):
    """Advanced reflection engine with deep learning and strategy evolution"""

    def __init__(self, agent):
        super().__init__(agent)
        self.strategy_evolution_engine = StrategyEvolutionEngine()
        self.pattern_deep_analyzer = DeepPatternAnalyzer()
        self.meta_learning_system = MetaLearningSystem()
        self.coordination_optimizer = CoordinationOptimizer()

    async def deep_reflection_analysis(
        self, execution_history: List[Dict[str, Any]],
        coordination_context: Dict[str, Any]
    ) -> Dict[str, Any]:
        """Perform deep reflection analysis for strategy evolution"""

        # Phase 1: Multi-dimensional execution analysis
        execution_analysis = await self._multi_dimensional_execution_analysis(
            execution_history, coordination_context
        )

        # Phase 2: Deep pattern recognition
        deep_patterns = await self.pattern_deep_analyzer.analyze_coordination_patterns(
            execution_history, coordination_context
        )

        # Phase 3: Strategy effectiveness evaluation
        strategy_evaluation = await self._evaluate_strategy_effectiveness(
            execution_analysis, deep_patterns, coordination_context
        )

        # Phase 4: Meta-learning integration
        meta_insights = await self.meta_learning_system.extract_meta_insights(
            strategy_evaluation, self.data_experience_buffer
        )

        # Phase 5: Strategy evolution recommendations
        evolution_recommendations = await self.strategy_evolution_engine.generate_evolution_strategies(
            strategy_evaluation, meta_insights, deep_patterns
        )

        # Phase 6: Coordination optimization
        coordination_optimizations = await self.coordination_optimizer.optimize_coordination_patterns(
            execution_history, evolution_recommendations
        )

        return {
            'execution_analysis': execution_analysis,
            'deep_patterns': deep_patterns,
            'strategy_evaluation': strategy_evaluation,
            'meta_insights': meta_insights,
            'evolution_recommendations': evolution_recommendations,
            'coordination_optimizations': coordination_optimizations,
            'implementation_priority': await self._prioritize_improvements(
                evolution_recommendations, coordination_optimizations
            )
        }

Deep learning reflection engines provide sophisticated analysis of multi-agent coordination patterns, identifying subtle improvements that significantly enhance system performance.

Strategy Evolution Engine

class StrategyEvolutionEngine:
    """Evolves coordination strategies based on reflection insights"""

    def __init__(self):
        self.genetic_algorithm = CoordinationGeneticAlgorithm()
        self.strategy_mutator = StrategyMutationEngine()
        self.fitness_evaluator = StrategyFitnessEvaluator()

    async def generate_evolution_strategies(
        self, strategy_evaluation: Dict, meta_insights: Dict,
        deep_patterns: Dict
    ) -> Dict[str, Any]:
        """Generate evolved coordination strategies using advanced algorithms"""

        # Extract current strategy genome
        current_strategy_genome = await self._extract_strategy_genome(
            strategy_evaluation, meta_insights
        )

        # Generate strategy mutations
        mutation_candidates = await self.strategy_mutator.generate_mutations(
            current_strategy_genome, deep_patterns['improvement_vectors']
        )

        # Apply genetic algorithm for strategy evolution
        evolved_strategies = await self.genetic_algorithm.evolve_strategies(
            [current_strategy_genome] + mutation_candidates,
            fitness_function=self._strategy_fitness_function,
            generations=10,
            population_size=20
        )

        # Evaluate evolved strategies
        strategy_evaluations = []
        for strategy in evolved_strategies[:5]:  # Top 5 strategies
            evaluation = await self.fitness_evaluator.comprehensive_evaluation(
                strategy, strategy_evaluation['baseline_performance']
            )
            strategy_evaluations.append({
                'strategy': strategy,
                'evaluation': evaluation,
                'expected_improvement': evaluation['improvement_estimate']
            })

        # Select best evolution candidates
        best_evolution_strategies = sorted(
            strategy_evaluations,
            key=lambda s: s['expected_improvement'],
            reverse=True
        )[:3]

        return {
            'evolved_strategies': best_evolution_strategies,
            'evolution_process_stats': {
                'mutations_generated': len(mutation_candidates),
                'strategies_evolved': len(evolved_strategies),
                'convergence_generations': evolved_strategies[0].get('generation', 0)
            },
            'implementation_recommendations': await self._generate_implementation_recommendations(
                best_evolution_strategies
            )
        }

Strategy evolution engines apply advanced optimization algorithms to continuously improve multi-agent coordination patterns based on historical performance and identified improvement opportunities.

Meta-Learning Integration

class MetaLearningSystem:
    """Meta-learning system that learns how to learn more effectively"""

    def __init__(self):
        self.learning_strategy_database = {}
        self.meta_pattern_recognizer = MetaPatternRecognizer()
        self.adaptation_effectiveness_tracker = AdaptationEffectivenessTracker()

    async def extract_meta_insights(
        self, strategy_evaluation: Dict, experience_buffer: List[Dict]
    ) -> Dict[str, Any]:
        """Extract meta-level insights about learning effectiveness"""

        # Analyze learning trajectory patterns
        learning_trajectories = await self._analyze_learning_trajectories(
            experience_buffer
        )

        # Identify successful learning patterns
        successful_learning_patterns = await self._identify_successful_learning_patterns(
            learning_trajectories, strategy_evaluation
        )

        # Evaluate adaptation strategies
        adaptation_effectiveness = await self._evaluate_adaptation_strategies(
            experience_buffer, strategy_evaluation
        )

        # Generate meta-learning insights
        meta_insights = {
            'optimal_learning_rates': await self._calculate_optimal_learning_rates(
                learning_trajectories
            ),
            'effective_adaptation_triggers': await self._identify_adaptation_triggers(
                adaptation_effectiveness
            ),
            'learning_pattern_preferences': successful_learning_patterns,
            'meta_optimization_opportunities': await self._identify_meta_optimization_opportunities(
                learning_trajectories, adaptation_effectiveness
            )
        }

        # Update meta-learning database
        await self._update_meta_learning_database(meta_insights, experience_buffer)

        return meta_insights

Meta-learning systems enable multi-agent systems to learn how to learn more effectively, optimizing the learning process itself for faster adaptation to new coordination challenges.


Previous: Session 8 - Production Ready →
Next: Session 10 - Enterprise Integration →