Skip to content

Session 6 - Module A: Advanced Composition Patterns

⚠️ ADVANCED OPTIONAL MODULE Prerequisites: Complete Session 6 core content first.

The Netflix Data Processing Transformation

When Netflix's global streaming infrastructure faced escalating complexity with 1.2 billion hourly data events across 16 global data centers, traditional orchestration systems created $7.4 billion in operational inefficiencies through poor coordination between real-time streaming pipelines, batch processing systems, and machine learning model serving infrastructure.

The scale was staggering: 52,000 autonomous data processing pipelines requiring real-time coordination across 28 countries, with each data transformation affecting content recommendations, streaming quality optimization, and user experience personalization. Legacy orchestration patterns created bottlenecks where a single coordination failure could cascade into continent-wide streaming degradation.

The transformation emerged through advanced atomic agent composition for data processing.

After 18 months of implementing sophisticated data pipeline orchestration, parallel stream processing systems, and dynamic agent assembly patterns for petabyte-scale data workflows, Netflix achieved unprecedented data processing mastery:

  • $6.2 billion in annual operational savings through intelligent data pipeline coordination
  • 84% improvement in real-time recommendation accuracy across all streaming platforms
  • 99.9% data pipeline availability during peak streaming hours
  • 56% reduction in data processing latency for critical streaming metrics
  • 18X faster response to data quality issues with automatic pipeline rerouting

The composition revolution enabled Netflix to launch personalized streaming optimization in 147 geographic regions with 96% accuracy rates, generating $3.8 billion in incremental revenue while establishing data processing capabilities that traditional streaming companies require years to replicate.

Module Overview

You're about to master the same advanced composition patterns that transformed Netflix's global data processing empire. This module reveals sophisticated atomic agent coordination for data pipelines, stream processing orchestration systems, parallel data processing architectures, and dynamic assembly patterns that industry giants use to achieve operational supremacy through intelligent data automation at unprecedented scale.

What You'll Learn

  • Sequential and parallel data pipeline orchestration with robust error handling for streaming data
  • Dynamic agent composition systems that adapt to runtime data processing requirements
  • CLI tools for atomic agent management and data engineering DevOps integration
  • Context-aware agent orchestration systems for complex data transformation workflows

Part 1: Data Pipeline Agent Orchestration

Sequential Processing Pipelines for Data Streams

🗂️ File: src/session6/advanced_data_composition.py - Sophisticated data pipeline patterns

Complex atomic data processing systems emerge from combining simple agents through well-designed composition patterns optimized for streaming data and distributed processing. Let's build this step by step, starting with the foundational imports and types.

Step 1: Foundation - Data Processing Imports and Type System

First, we establish the type system and imports that will power our sophisticated data pipeline:

from typing import List, Dict, Any, TypeVar, Generic, Optional, Callable, Protocol
from dataclasses import dataclass, field
from abc import ABC, abstractmethod
import asyncio
import logging
from datetime import datetime
from enum import Enum
from atomic_schemas import DataInput, DataOutput, StreamAnalysisInput, StreamAnalysisOutput

T_DataInput = TypeVar('T_DataInput')
T_DataOutput = TypeVar('T_DataOutput')
T_DataIntermediate = TypeVar('T_DataIntermediate')

These type variables enable us to build type-safe data pipelines that can handle any data transformation while maintaining compile-time checks for data flow integrity in streaming systems.

Step 2: Data Pipeline Behavior Enums

Next, we define the core enums that control data pipeline behavior:

class DataErrorPolicy(Enum):
    """Data pipeline error handling policies"""
    STOP = "stop"      # Stop pipeline on first data processing error
    SKIP = "skip"      # Skip failed stage and continue data flow
    RETRY = "retry"    # Retry failed stage with exponential backoff

class DataPipelineStatus(Enum):
    """Data pipeline execution status"""
    PENDING = "pending"      # Pipeline waiting to start processing
    RUNNING = "running"      # Pipeline currently processing data
    SUCCESS = "success"      # Pipeline completed successfully
    FAILED = "failed"        # Pipeline failed during data processing
    CANCELLED = "cancelled"  # Pipeline was cancelled

These enums provide clear, type-safe ways to handle different data processing scenarios and track pipeline state throughout its lifecycle in distributed data systems.

Step 3: Data Processing Stage Configuration System

Now we build the configuration system that makes each data processing stage configurable and resilient:

@dataclass
class DataStageConfiguration:
    """Configuration for data processing pipeline stage"""
    retry_count: int = 3
    timeout_seconds: int = 120  # Longer timeout for data processing operations
    error_policy: DataErrorPolicy = DataErrorPolicy.RETRY

    def __post_init__(self):
        if self.retry_count < 0:
            raise ValueError("retry_count must be non-negative")
        if self.timeout_seconds <= 0:
            raise ValueError("timeout_seconds must be positive")

This configuration class encapsulates stage-level resilience settings optimized for data processing operations. The validation in __post_init__ ensures we never have invalid configurations that could break data pipeline execution.

Step 4: Data Processing Pipeline Stage Definition

Next, we define what constitutes a single stage in our data processing pipeline:

@dataclass
class DataPipelineStage:
    """Definition of a data processing pipeline stage"""
    stage_id: str
    data_agent: Any  # AtomicDataAgent instance
    stage_name: str
    description: str
    config: DataStageConfiguration = field(default_factory=DataStageConfiguration)

    def __post_init__(self):
        if not self.stage_id:
            raise ValueError("stage_id cannot be empty")
        if not self.stage_name:
            raise ValueError("stage_name cannot be empty")

Each stage wraps an atomic data processing agent with metadata and configuration. This design allows us to treat any atomic data agent as a pipeline component with consistent error handling and monitoring for streaming data operations.

Step 5: Data Pipeline Context and Processing Tracking

The data pipeline context acts as the "memory" of our data processing pipeline, tracking everything that happens during execution:

@dataclass
class DataPipelineContext:
    """Context passed through data pipeline execution"""
    pipeline_id: str
    execution_start: datetime
    stage_history: List[Dict[str, Any]] = field(default_factory=list)
    data_metadata: Dict[str, Any] = field(default_factory=dict)
    error_log: List[Dict[str, Any]] = field(default_factory=list)
    status: DataPipelineStatus = DataPipelineStatus.PENDING

    def add_data_processing_error(self, error: str, stage_id: Optional[str] = None):
        """Add data processing error to error log with timestamp"""
        self.error_log.append({
            "error": error,
            "stage_id": stage_id,
            "timestamp": datetime.now().isoformat(),
            "error_type": "data_processing"
        })

This context object travels with the data pipeline execution, collecting a complete audit trail of data transformations and processing operations.

Step 6: Data Processing Exception Handling

We need proper exception handling for data processing operations:

class DataPipelineExecutionException(Exception):
    """Exception raised during data pipeline execution"""
    def __init__(self, message: str, stage_id: Optional[str] = None,
                 original_error: Optional[Exception] = None):
        super().__init__(message)
        self.stage_id = stage_id
        self.original_error = original_error

This custom exception preserves context about where the data processing failure occurred and what caused it, essential for debugging distributed data systems.

Step 7: Data Processing Middleware and Metrics Protocols

Next, we define the protocols that make our data pipeline extensible:

class DataMiddlewareProtocol(Protocol):
    """Protocol for data pipeline middleware"""
    async def __call__(self, data: Any, stage: DataPipelineStage,
                      context: DataPipelineContext) -> Any:
        """Process data through middleware"""
        ...

class DataMetricsCollector(ABC):
    """Abstract base class for data processing metrics collection"""

    @abstractmethod
    async def record_data_stage_execution(self, stage_id: str, duration: float, status: str):
        """Record data processing stage execution metrics"""
        pass

    @abstractmethod
    async def record_data_pipeline_execution(self, pipeline_id: str, duration: float, status: str):
        """Record data pipeline execution metrics"""
        pass

The middleware protocol allows you to inject cross-cutting concerns (logging, data validation, transformation) at any stage. The metrics collector ensures we can plug in any monitoring system for data processing operations.

Step 8: Default Data Processing Metrics Implementation

We provide a comprehensive metrics collector for data processing operations:

class DefaultDataMetricsCollector(DataMetricsCollector):
    """Default implementation of data processing metrics collector"""

    def __init__(self):
        self.data_metrics = {}
        self.logger = logging.getLogger(__name__)

    async def record_data_stage_execution(self, stage_id: str, duration: float, status: str):
        """Record data processing stage execution metrics"""
        if stage_id not in self.data_metrics:
            self.data_metrics[stage_id] = []
        self.data_metrics[stage_id].append({
            "duration": duration,
            "status": status,
            "timestamp": datetime.now().isoformat(),
            "processing_type": "data_transformation"
        })
        self.logger.info(f"Data processing stage {stage_id} completed in {duration:.2f}s with status {status}")

    async def record_data_pipeline_execution(self, pipeline_id: str, duration: float, status: str):
        """Record data pipeline execution metrics"""
        self.logger.info(f"Data pipeline {pipeline_id} completed in {duration:.2f}s with status {status}")

This implementation stores data processing metrics and logs to the standard logging system, essential for monitoring distributed data processing operations.

Step 9: Data Processing Pipeline Class Foundation

Now we build the main data pipeline orchestrator, starting with its constructor and basic stage management:

class AdvancedAtomicDataPipeline:
    """Sophisticated data pipeline orchestration with distributed processing principles adherence"""

    def __init__(self, pipeline_id: str, metrics_collector: Optional[DataMetricsCollector] = None):
        if not pipeline_id:
            raise ValueError("pipeline_id cannot be empty")

        self.pipeline_id = pipeline_id
        self._stages: List[DataPipelineStage] = []
        self._middleware_functions: List[DataMiddlewareProtocol] = []
        self.logger = logging.getLogger(f"{__name__}.{self.__class__.__name__}")
        self._metrics_collector = metrics_collector or DefaultDataMetricsCollector()

The constructor establishes the data pipeline's identity and core components optimized for distributed data processing operations.

Step 10: Fluent Interface for Data Pipeline Building

Next, we add methods for building data pipelines with a fluent interface:

    def add_data_stage(self, stage: DataPipelineStage) -> 'AdvancedAtomicDataPipeline':
        """Add a data processing stage to the pipeline"""
        if not isinstance(stage, DataPipelineStage):
            raise TypeError("stage must be an instance of DataPipelineStage")
        self._stages.append(stage)
        return self  # Enable fluent interface

    def add_data_middleware(self, middleware_func: DataMiddlewareProtocol) -> 'AdvancedAtomicDataPipeline':
        """Add middleware function for cross-cutting data processing concerns"""
        self._middleware_functions.append(middleware_func)
        return self

    @property
    def data_stages(self) -> List[DataPipelineStage]:
        """Get read-only access to data processing stages"""
        return self._stages.copy()

The fluent interface allows you to chain method calls for building complex data processing pipelines efficiently.

Step 11: Main Data Pipeline Execution Logic

The heart of our data processing pipeline is the execute method:

    async def execute_data_pipeline(self, initial_data_input: Any,
                                   context: Optional[DataPipelineContext] = None) -> Dict[str, Any]:
        """Execute the complete data processing pipeline with comprehensive monitoring"""

        # Set up execution context for data processing
        if context is None:
            context = DataPipelineContext(
                pipeline_id=self.pipeline_id,
                execution_start=datetime.now()
            )

        context.status = DataPipelineStatus.RUNNING
        pipeline_start_time = datetime.now()

We start by ensuring we have a proper execution context to track our data pipeline's journey through distributed processing stages.

Step 12: Data Processing Stage Execution Loop Setup

Next comes the core execution loop setup and validation:

        try:
            current_data = initial_data_input
            execution_results = []

            if not self._stages:
                raise DataPipelineExecutionException("Data pipeline has no stages to execute")

            # Execute each data processing stage in sequence
            for stage_index, stage in enumerate(self._stages):
                try:
                    stage_result = await self._execute_single_data_stage(
                        stage, current_data, context, stage_index
                    )
                    execution_results.append(stage_result)

This initializes the data processing environment and begins processing each stage in the data transformation pipeline.

Step 12b: Data Processing Stage Result Processing

For each stage result, we handle success and error cases according to configured policies:

                    # Handle data processing stage result based on error policy
                    if stage_result["status"] == "success":
                        current_data = stage_result["output"]
                        await self._metrics_collector.record_data_stage_execution(
                            stage.stage_id, stage_result["execution_time"], "success"
                        )
                    elif stage_result["status"] == "error":
                        await self._metrics_collector.record_data_stage_execution(
                            stage.stage_id, stage_result["execution_time"], "error"
                        )

                        if not await self._handle_data_stage_error(stage, stage_result, context):
                            # Error handling determined we should stop data processing
                            context.status = DataPipelineStatus.FAILED
                            break

The loop processes each data stage sequentially, handling success and error cases according to the configured error policies for data processing operations.

Step 13: Data Pipeline Completion and Metrics

Finally, we handle data pipeline completion and record comprehensive metrics:

                except DataPipelineExecutionException as e:
                    context.add_data_processing_error(str(e), e.stage_id)
                    if stage.config.error_policy != DataErrorPolicy.SKIP:
                        context.status = DataPipelineStatus.FAILED
                        break

            # Determine final status for data processing pipeline
            if context.status == DataPipelineStatus.RUNNING:
                context.status = DataPipelineStatus.SUCCESS

            # Record data pipeline metrics
            total_execution_time = (datetime.now() - pipeline_start_time).total_seconds()
            await self._metrics_collector.record_data_pipeline_execution(
                self.pipeline_id, total_execution_time, context.status.value
            )

            return self._build_data_execution_result(
                current_data, execution_results, context, total_execution_time
            )

Notice how we ensure data processing metrics are recorded even when exceptions occur, providing complete observability into data pipeline behavior.

Part 2: Dynamic Agent Assembly and CLI Integration for Data Processing

Runtime Agent Composition for Data Processing

🗂️ File: src/session6/dynamic_data_assembly.py - Runtime composition systems for data processing

Dynamic agent assembly for data processing allows us to build data pipelines at runtime based on data schemas and processing requirements. Let's explore this powerful concept step by step for distributed data systems.

Step 14: Foundation - Data Processing Capability System

First, we establish the capability framework that enables intelligent agent selection for data operations:

from typing import Dict, List, Any, Type, Optional
import importlib
import inspect
from dataclasses import dataclass
from enum import Enum
from pathlib import Path
import json

class DataAgentCapability(Enum):
    """Standard atomic data agent capabilities"""
    STREAM_PROCESSING = "stream_processing"           # Real-time stream processing
    BATCH_PROCESSING = "batch_processing"             # Large-scale batch operations
    DATA_TRANSFORMATION = "data_transformation"       # Schema and format transformation
    DATA_VALIDATION = "data_validation"              # Data quality and schema validation
    DATA_AGGREGATION = "data_aggregation"            # Aggregation and summarization
    DATA_ENRICHMENT = "data_enrichment"              # Data enhancement and joining

This capability system allows the dynamic assembly to understand what each data processing agent can do, enabling intelligent data pipeline construction for distributed processing systems.

Step 15: Data Agent Definition Schema

Next, we define how data processing agents are described for dynamic instantiation:

@dataclass
class DataAgentDefinition:
    """Runtime data agent definition"""
    agent_class: str                                 # Class name to instantiate
    module_path: str                                 # Python module path
    capabilities: List[DataAgentCapability]          # What this data agent can do
    input_schema: str                                # Expected data input format
    output_schema: str                               # Produced data output format
    configuration: Dict[str, Any]                    # Default configuration
    resource_requirements: Dict[str, Any]            # Resource needs (memory, CPU, storage)

This definition acts as a "recipe" for creating data processing agent instances, including everything needed for instantiation and data schema compatibility checking.

Step 16: Dynamic Data Agent Registry Setup

The registry acts as a smart catalog of available data processing agents with sophisticated indexing:

class DynamicDataAgentRegistry:
    """Registry for dynamic data agent discovery and instantiation"""

    def __init__(self):
        self.registered_data_agents: Dict[str, DataAgentDefinition] = {}
        self.capability_index: Dict[DataAgentCapability, List[str]] = {}
        self.data_schema_compatibility: Dict[str, List[str]] = {}

The registry maintains three key data structures: the main data agent definitions, capability-based indexing for fast lookup, and data schema compatibility mapping for pipeline chaining in distributed systems.

Step 17: Intelligent Data Agent Registration

Agent registration builds multiple indices for efficient discovery in data processing contexts:

    def register_data_agent(self, agent_id: str, definition: DataAgentDefinition):
        """Register a data agent definition for dynamic instantiation"""

        self.registered_data_agents[agent_id] = definition

        # Build capability-based index for fast data processing lookup
        for capability in definition.capabilities:
            if capability not in self.capability_index:
                self.capability_index[capability] = []
            self.capability_index[capability].append(agent_id)

        # Build data schema compatibility index
        output_schema = definition.output_schema
        if output_schema not in self.data_schema_compatibility:
            self.data_schema_compatibility[output_schema] = []

        # Find data agents that can consume this agent's output
        for other_id, other_def in self.registered_data_agents.items():
            if other_def.input_schema == output_schema:
                self.data_schema_compatibility[output_schema].append(other_id)

The indexing system enables O(1) lookup by data processing capability and automatic discovery of compatible data agent chains for complex processing workflows.

Step 18: Data Agent Discovery Methods

The registry provides multiple ways to find data processing agents based on different criteria:

    def find_data_agents_by_capability(self, capability: DataAgentCapability) -> List[str]:
        """Find all data agents with specified processing capability"""
        return self.capability_index.get(capability, [])

    def find_compatible_data_agents(self, output_schema: str) -> List[str]:
        """Find data agents compatible with given output schema"""
        return self.data_schema_compatibility.get(output_schema, [])

These methods enable capability-driven and schema-driven data agent discovery, essential for automatic data pipeline construction in distributed processing environments.

Step 19: Dynamic Data Agent Instantiation

The registry can instantiate data processing agents at runtime with custom configuration:

    async def instantiate_data_agent(self, agent_id: str,
                                    configuration_overrides: Dict[str, Any] = None) -> Any:
        """Dynamically instantiate a data agent from its definition"""

        if agent_id not in self.registered_data_agents:
            raise ValueError(f"Data agent {agent_id} not registered")

        definition = self.registered_data_agents[agent_id]

        # Load data agent class dynamically using Python's import system
        module = importlib.import_module(definition.module_path)
        agent_class = getattr(module, definition.agent_class)

        # Merge default config with runtime overrides for data processing
        config = definition.configuration.copy()
        if configuration_overrides:
            config.update(configuration_overrides)

        # Create and return the data processing agent instance
        return agent_class(**config)

This method demonstrates the power of Python's reflection capabilities for data processing - we can instantiate any data agent class at runtime given its module path and name.

Step 20: Intelligent Data Pipeline Suggestion

The registry can automatically suggest data pipeline configurations based on desired processing capabilities:

    def suggest_data_pipeline(self, start_capability: DataAgentCapability,
                             end_capability: DataAgentCapability) -> List[List[str]]:
        """Suggest data agent pipeline from start to end capability"""

        start_agents = self.find_data_agents_by_capability(start_capability)
        end_agents = self.find_data_agents_by_capability(end_capability)

        pipeline_suggestions = []

        # Try direct two-agent data pipelines first
        for start_agent_id in start_agents:
            start_def = self.registered_data_agents[start_agent_id]
            compatible_agents = self.find_compatible_data_agents(start_def.output_schema)

            for middle_agent_id in compatible_agents:
                middle_def = self.registered_data_agents[middle_agent_id]
                if end_capability in middle_def.capabilities:
                    pipeline_suggestions.append([start_agent_id, middle_agent_id])
                else:
                    # Try three-agent data pipelines if direct connection isn't possible
                    final_compatible = self.find_compatible_data_agents(middle_def.output_schema)
                    for end_agent_id in final_compatible:
                        end_def = self.registered_data_agents[end_agent_id]
                        if end_capability in end_def.capabilities:
                            pipeline_suggestions.append([start_agent_id, middle_agent_id, end_agent_id])

        return pipeline_suggestions

This algorithm finds the shortest possible data pipelines that connect start and end capabilities, essential for efficient distributed data processing.

Step 21: CLI Foundation for Data Processing

Now let's build the CLI system that makes dynamic assembly accessible to data engineering teams:

class AtomicDataCLI:
    """Advanced CLI for atomic data agent management and data engineering DevOps integration"""

    def __init__(self, config_path: str = "atomic_data_config.json"):
        self.config_path = Path(config_path)
        self.config = self._load_data_config()
        self.data_agent_registry = DynamicDataAgentRegistry()
        self.logger = logging.getLogger(__name__)

The CLI provides a user-friendly interface for managing atomic data agents in production environments, bridging the gap between code and data operations.

Step 22: Data Processing Configuration Management

The CLI uses a sophisticated configuration system with defaults optimized for data processing:

    def _load_data_config(self) -> Dict[str, Any]:
        """Load atomic data agent configuration with schema validation"""

        # Define comprehensive default configuration for data processing
        default_data_config = {
            "data_agents": {},                           # Registered data agent definitions
            "data_pipelines": {},                        # Saved data pipeline configurations
            "data_providers": {},                        # External data service providers
            "cli_settings": {
                "log_level": "INFO",
                "output_format": "json",
                "auto_save": True
            },
            "data_monitoring": {
                "enabled": True,
                "metrics_retention_days": 7,
                "performance_alerts": True
            }
        }

This comprehensive default configuration ensures the CLI works out-of-the-box for common data processing scenarios.

Step 23: Built-in Data Agent Registration

The CLI comes with pre-configured agents for common data processing use cases:

    def register_builtin_data_agents(self):
        """Register common atomic data processing agent types"""

        # Stream Processing Agent - Real-time data stream processing
        self.data_agent_registry.register_data_agent("stream_processor", DataAgentDefinition(
            agent_class="StreamProcessorAgent",
            module_path="atomic_agents.data_stream_processor",
            capabilities=[DataAgentCapability.STREAM_PROCESSING],
            input_schema="StreamDataInput",
            output_schema="StreamDataOutput",
            configuration={"model": "gpt-4o-mini", "temperature": 0.1},
            resource_requirements={"memory_mb": 1024, "cpu_cores": 2}
        ))

        # Batch Processing Agent - Large-scale batch data operations
        self.data_agent_registry.register_data_agent("batch_processor", DataAgentDefinition(
            agent_class="BatchProcessorAgent",
            module_path="atomic_agents.data_batch_processor",
            capabilities=[DataAgentCapability.BATCH_PROCESSING],
            input_schema="BatchDataInput",
            output_schema="BatchDataOutput",
            configuration={"model": "gpt-4o", "temperature": 0.0},
            resource_requirements={"memory_mb": 2048, "cpu_cores": 4}
        ))

        # Data Transformation Agent - Schema and format transformation
        self.data_agent_registry.register_data_agent("data_transformer", DataAgentDefinition(
            agent_class="DataTransformationAgent",
            module_path="atomic_agents.data_transformer",
            capabilities=[DataAgentCapability.DATA_TRANSFORMATION],
            input_schema="TransformationInput",
            output_schema="TransformationOutput",
            configuration={"model": "gpt-4o-mini", "temperature": 0.0},
            resource_requirements={"memory_mb": 512, "cpu_cores": 1}
        ))

These built-in agents provide immediate capability for common data processing operations with optimized configurations.

Step 24: Dynamic Data Pipeline Creation

The most powerful feature - creating data processing pipelines automatically from capability requirements:

    async def create_dynamic_data_pipeline(self, capability_sequence: List[DataAgentCapability]) -> AdvancedAtomicDataPipeline:
        """Create data pipeline dynamically based on processing capability requirements"""

        if len(capability_sequence) < 2:
            raise ValueError("Data pipeline requires at least 2 processing capabilities")

        pipeline = AdvancedAtomicDataPipeline(f"dynamic_data_{datetime.now().strftime('%Y%m%d_%H%M%S')}")

        # Step 1: Find compatible data agents for each capability
        selected_agents = []
        for i, capability in enumerate(capability_sequence):
            candidates = self.data_agent_registry.find_data_agents_by_capability(capability)

            if not candidates:
                raise ValueError(f"No data agents found for capability: {capability}")

            # Select best data agent (could use more sophisticated selection logic)
            selected_agent_id = candidates[0]  # Simple: pick first

            # Step 2: Validate data schema compatibility with previous agent
            if i > 0:
                prev_agent_def = self.data_agent_registry.registered_data_agents[selected_agents[-1]]
                current_agent_def = self.data_agent_registry.registered_data_agents[selected_agent_id]

                if prev_agent_def.output_schema != current_agent_def.input_schema:
                    # Try to find compatible data agent
                    compatible_agents = self.data_agent_registry.find_compatible_data_agents(prev_agent_def.output_schema)
                    capability_compatible = [
                        agent_id for agent_id in compatible_agents
                        if capability in self.data_agent_registry.registered_data_agents[agent_id].capabilities
                    ]

                    if capability_compatible:
                        selected_agent_id = capability_compatible[0]
                    else:
                        raise ValueError(f"No data schema-compatible agents found for {capability}")

            selected_agents.append(selected_agent_id)

        # Step 3: Instantiate data agents and build pipeline
        for i, agent_id in enumerate(selected_agents):
            agent_instance = await self.data_agent_registry.instantiate_data_agent(agent_id)

            stage = DataPipelineStage(
                stage_id=f"data_stage_{i}_{agent_id}",
                data_agent=agent_instance,
                stage_name=f"Data Stage {i+1}: {agent_id}",
                description=f"Process using {agent_id} data agent",
                config=DataStageConfiguration(error_policy=DataErrorPolicy.RETRY, retry_count=2)
            )

            pipeline.add_data_stage(stage)

        return pipeline

This method demonstrates the full power of dynamic composition for data processing - from capability requirements to a fully functional data pipeline, all generated automatically with schema validation and error handling.

Module Summary

You've now mastered advanced atomic agent composition patterns for data processing:

Data Pipeline Orchestration: Built sophisticated sequential processing with error handling and monitoring optimized for streaming data ✅ Parallel Data Processing: Implemented load-balanced parallel execution with fault tolerance for distributed data systems ✅ Dynamic Assembly: Created runtime agent composition systems with capability-based selection for data processing workflows ✅ CLI Integration: Designed data engineering-friendly command-line tools for atomic agent management

Next Steps

🗂️ Source Files for Module A:

  • src/session6/advanced_data_composition.py - Sophisticated data pipeline patterns
  • src/session6/dynamic_data_assembly.py - Runtime composition systems for data processing
  • src/session6/atomic_data_cli.py - Data engineering DevOps CLI integration

📝 Multiple Choice Test - Session 6

Test your understanding of advanced atomic agent composition patterns for data processing:

Question 1: What method does the DataPipelineOrchestrator use to handle errors during data processing stage execution?
A) Stop pipeline execution immediately
B) Skip failed stages and continue
C) Retry with exponential backoff and circuit breaker protection for data processing operations
D) Log errors but ignore them

Question 2: How does the ParallelDataProcessor determine agent assignment for balanced load distribution?
A) Random assignment only
B) Round-robin assignment based on data agent IDs
C) Workload calculation considering active data processing tasks and agent capacity
D) First-available agent selection

Question 3: What factors does the DynamicDataAssembly system consider when selecting agents for data processing capability matching?
A) Agent name only
B) Capability scores, performance metrics, and availability status for data operations
C) Creation timestamp
D) Memory usage only

Question 4: What information does the AtomicDataCLI provide when displaying data pipeline status?
A) Just success/failure status
B) Comprehensive execution details including stage status, timing, and error information for data processing
C) Agent names only
D) Memory consumption

Question 5: How does the error handling in advanced composition patterns ensure data pipeline reliability?
A) Single retry attempt
B) Circuit breaker integration with configurable retry policies and failure tracking for data processing operations
C) Manual intervention required
D) No error handling

View Solutions →


Previous: Session 5 - Type-Safe Development →
Next: Session 7 - Agent Systems →